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Abstract

Multimodal large language models (MLLMs) re-
cently showed strong capacity in integrating data
among multiple modalities, empowered by a gen-
eralizable attention architecture. Advanced meth-
ods predominantly focus on language-centric tun-
ing while less exploring multimodal tokens mixed
through attention, posing challenges in high-level
tasks that require fine-grained cognition and emo-
tion understanding. In this work, we identify the
attention deficit disorder problem in multimodal
learning, caused by inconsistent cross-modal at-
tention and layer-by-layer decayed attention ac-
tivation. To address this, we propose a novel
attention mechanism, termed MOdular Duplex
Attention (MODA), simultaneously conducting
the inner-modal refinement and inter-modal in-
teraction. MODA employs a correct-after-align
strategy to effectively decouple modality align-
ment from cross-layer token mixing. In the
alignment phase, tokens are mapped to duplex
modality spaces based on the basis vectors, en-
abling the interaction between visual and lan-
guage modality. Further, the correctness of atten-
tion scores is ensured through adaptive masked
attention, which enhances the model’s flexibility
by allowing customizable masking patterns for
different modalities. Extensive experiments on
21 benchmark datasets verify the effectiveness
of MODA in perception, cognition, and emotion
tasks. Source code and demo are available in
https://zzcheng.top/MODA.
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Corleone: A man who doesn't spend time
with his family can never be a real man

SOTA (LLaVA-NeXT): In the dialogue, we see
a scene from a film where two characters
(:lhree), are engaged in a conversation.
The character on the left, who appears to be a
man in a suit and tie, is

, who is wearing a tuxedo
with a red flower on the lapel. The character
on the right is looking down (:Iuoking at
Johnny),

, and his expression is
one of peace or contemplation ( ‘gravity).

Figure 1. Illustration of deficit disorder attention problem. (a)
Given the detailed image and lines from The Godfather, (b) we
highlight incorrect responses, corresponding

, and attached answers. (c) We visualize attention score across
layers, highlighting inconsistent attention across modalities.

1. Introduction

Benefiting from the blossom of large language models (Chi-
ang et al.,, 2023; Dubey et al., 2024; Teknium et al.,
2024), multimodal large language models (MLLMs) have
shown strong capacity in integrating multimodal data as
human (Tong et al., 2024a; Brown et al., 2020; Bai et al.,
2023), which illuminate a promising pathway toward Artifi-
cial General Intelligence (AGI). Advanced effort has been
devoted to constructing MLLM (Achiam et al., 2023), fo-
cusing on exploring more insightful data curation, model
tuning, and evaluation benchmarks. As the controller of
agent, MLLMs provide a natural solution by conducting
content perception (Liu et al., 2023), understanding role
cognition (Dai et al., 2025), and analyzing human emo-
tion (Yang et al., 2024). One more step forward into AGI
lies in high-level multimodal understanding like humans, in-
cluding cognition and emotion. Cognition, as a higher-level
capability, requires the ability to model relationships and
reasoning across modalities (Dai et al., 2025; Pessoa, 2022).
Beyond cognition, emotion understanding is another critical
aspect of fine-grained multimodal comprehension (Yang
et al., 2024; Zhang et al., 2023). These high-level multi-
modal tasks pose new challenges for MLLMs.
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While recent MLLMs show promising results in basic 2. Related Work

perception, they still struggle to perceive ne-grained de- i

tails (Tong et al., 2024b), which is essential for understand¥ultimodal large language model (MLLM) have gar-
ing cognition and emotion. Public benchmarks reveal tha{]er,ed signi cant atFentlon recently due to their ab|I!ty
these advanced MLLMs can underperform relative to ranl® Intégrate pre-trained foundational models, especially
dom guessing (Yang et al., 2024), with 3 SOTAS achievingpowe_rfm Large Language Models (LL_Ms)(Ach_lam etal.,
approximately 50:50 accuracy in 2-class sarcasm detectiofi®2s: rouvron et al., 2023), alongside multimodal en-
on the HFM dataset. This phenomenon arises from an e)gpders(Dosowtskly etal., 2021; Radford et al., 2021). These

cessive emphasis on the dominant modality data, leading t8'°9€!S enh;nce the prcc)jc.ess(;ng of rgultlrr;odill Inputs an:j
neglect of ne-grained details in alternative modality. outputs, as demonstrated in advanced works (Alayrac et al.,

2022; Bai et al., 2023). MLLMs leverage attention mecha-
We delve deep into the reason and analyze the multimodalisms to facilitate multimodal token mixing, enabling both
tokens mixed by attention in MLLM. As shown in Fig. 1 inductive and deductive understanding across modalities.
(2)&(b), we observe that SOTA MLLM struggles to capture However, the vision modality's potential remains underuti-
ne-grained details €.g, eyesights of character), leading lized in many of these models. MMVP (Tong et al., 2024b)
to error in emotion understanding. The reason behind thiglenti es a critical issue, highlighting how existing MLLMs
is inconsistent attention across multiple layers in MLLM fail to fully activate the vision modality due to improper
(63% disparity in Fig. 1 (c)), which we call de cit disorder handling of low-level visual attributes. Further, Cambrian-
attention problem. On the one hand, the attention scores(Tong et al., 2024a) con rms this limitation and introduces
in MLLM exhibit a bias towards the language componenta spatial vision aggregator to enhance visual feature. In this
On the other hand, layer-by-layer decay of attention furthegork, we investigate the root cause of these limitations,
accentuates this disparity. As a result, the attention scorglentifying the bottleneck in the design of the multimodal
disparity across modalities can reach up to 10 times. attention mechanism. To address the issue of imbalanced
attention scores, we propose a novel multimodal attention

Our intuition is that multimodal attention mechanisms often o X
pat better balances the contributions of each modality.

suffer from imbalances between self-modal and cross-modd
interactions, leading to suboptimal feature co-operatiorunderstanding cognition and emotion (Fu et al., 2023;
across modalities. By explicitly separating and mOdU|at¥ang et al., 2024) play an important role in the pathway
ing these two components, we can better align multimodajoward building an intelligent agent, except for content un-
features while preserving the unique characteristics of eacfierstanding demonstrated by prior MLLMs. As two of
modality. To achieve this, we propose MOdular Duplexhigh-level understanding, cognition (Wang et al., 2024a;
Attention (MODA), which splits attention into self-modal Kong et al., 2024; Salemi et al., 2024) typically refers to the
and cross-modal parts, each with its own modulated atterbility to make decisions and judgments similar to charac-
tion mask. The self-modal attention component focuses ofers (Binz & Schulz, 2023; Wang et al., 2024c; Deshpande
capturing the intrinsic relationships within individual modal- et al., 2023), such as generating website code (Zhu et al.,
ities. In contrast, the cross-modal attention component i9024; Wang et al., 2025), or role playing (Chen et al., 2024;
responsible for aligning features across different modalitieszhang et al., 2018). Emotion mainly depends on the psy-
facilitating effective information exchange. At the core of chology assumptions (Zhao et al., 2021; Zhang et al., 2024),
the MODA model is the Duplex (V/T)-Aligner, which maps where the categorical one is mostly used due to it being
the tokens into a shared dual-modality representation spacgasily understandable (Yang et al., 2018; Mai et al., 2022;
de ned by two gram matrices. Additionally, the Modular Lian et al., 2022; Zhang & Yang, 2022). However, it is less
Masked Attention component allows the model to adaptive|yexp|ored due to its requirements for ne-grained content
focus on relevant modalities by applying customized maskunderstanding, which MLLMSs can hardly achieve.

ing patterns, further enhancing its exibility on multimodal

understanding tasks. Attention in MLLM plays a critical role in addressing

the computational and memory challenges inherent in their
Our contributions are two-fold as follows: (1) From a novel design. Signi cant progress has been made in develop-
perspective of the attention shift mechanism, we indicate thégng ef cient attention mechanisms for Transformer archi-
key bottleneck of attention among SOTA MLLMs and ana-tectures, which include xed patterns (Child et al., 2019),
lyze the core reason in depth. We further propose a modulagombinations of patterns (Zaheer et al., 2020), learnable
and duplex attention mechanism based on our observatiopatterns (Kitaev et al., 2020), neural memory (Beltagy et al.,
(2) We investigate a new MLLM for perception, cognition, 2020), low-rank methods (Wang et al., 2020), and kernel-
and emotion, enabling applications in ne-grained underpased techniques (Choromanski et al., 2021). For example,
standing and planning. Extensive experiments on 21 benclhe Set Transformer introduces inducing points to handle
marks verify the generalization and effectiveness of MODA. set-input problems (Wang et al., 2020), while the Axial



MODA: MOdular Duplex Attention for Multimodal Perception, Cognition, and Emotion
@) (b) (©)

Figure 2.Analysis of existing MLLMs on four ne-grained understanding tasks. (a) The distribution of attention activation values among
visual and textual tokens. (b) The attention map for multimodal tokens among stages. (c) The self- and cross-modal attention activation
scores with their disparity among the attention layers.

Transformer applies attention along individual axes of inputsequence, self-modal attention and cross-modal attention.
tensors, reducing computational overhead (Beltagy et al/e have( )™ ™! which represents the tokens derived from
2020). These innovations collectively enhance the scalahe m" modality and rest. For the self-modal and cross-
bility of Transformer models, enabling their application to modal attention, we have
tasks with large inputs or long sequences (Choromanski

m m >
etal., 2021; Han et al., 2024). While previous approaches Ogelf = Softma)(& +M))V™; 2)
have focused on improving the ef ciency and scalability N
of attention in single-modal tasks, the multimodal context QMK ™M

Ocross = Softmax + M)V™: 3)

introduces unique challenges, such as balancing attention

scores across heterogeneous modalities (Zhao et al., 2021). o ]

Our work extends this line of research by speci cally ad-3-2- De cit Disorder Attention Problem

dressing the multimodal attention mechanism in MLLMs. Recently, multimodal attention has played a very important
role in multimodal areas, including diffusion models that

3. Methodology involve cross-modal generation and MLLM that involves
o cross-modal understanding. The attention mechanism gov-
3.1. Preliminary erns token interactions by computing similarities and ap-

) ) ) ) plying masks. To further investigate the Attention De cit
Attention  Given the input multimodal tokenX 2 pisorder (DDA) phenomenon, we conduct a series of analy-

N d : ) : .
R™ ¢ N be the number of tokens antlbe the dimen-  ge5 on four categories of ne-grained understanding tasks.
sionality of the hidden state. L&t 2 RN N denote the

A = QK > =, and the output of attention layer as: to visual content is signi cantly weaker compared to that
for the textual modality. This observation aligns with the

QK > challenges faced by MLLMs ne-tuned from autoregres-

O = Softmax +M)V: (1) sive models in handling ne-grained visual perception. The

inherent design of MLLM, which is primarily optimized
whereQ:;K ;:V 2 RY 9 represents query, key, and value for text-based tasks, may lead to an underrepresentation
matrix derived from input tokens. Attention is also practi-of visual features when extended to multimodal contexts.
cally maskedV 2 RN N to Iter out special tokens (Li  This imbalance highlights a critical limitation in the cur-
et al., 2023) or conduct causal sequential modeling (Wangent architecture, where the model's pro ciency in textual
et al., 2024b; Achiam et al., 2023). processing does not seamlessly translate to an equivalent ca-

pability. Further, we conduct experiments on Fig. 2 (b)&(c),

Multimodal Attention  Formally, consider a multimodal and we observe a distinct cross-attention bias in the lower

token sequenck¥ y, comprisingM modalities. The total layers of the model across its 32 layers. This bias is notably
tokenlengthiNy = N+  + Ny, whereN, represents inconsistent with the distribution of attention in the higher
the length of then™ modality token sequencé,. The layers, which are known for their stronger representational
attention can be split into two parts for each modality tokencapabilities. Speci cally, the lower layers tend to focus

3
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Figure 3.MOdular Duplex Attention. (a) MODA takes the image and contextual prompt as input, including the background and history of
the conversation. (b) With MODA, the token ows are justi ed in each Transformer block of MLLM. MODA maodi es the de cient
attention scores in a correct-after-align manner via (c) Modular masked attention and (d) Duplex (V/T)-aligner.

disproportionately on cross-modal interactions, potentiallyping in diffusion model (Rombach et al., 2022), we propose
at the expense of effectively capturing intra-modal featureanapping the token into the other modality space according
leading to suboptimal multimodal integration. to the embedding space bases of the gram matrix. We ex-
tract the basis vector of each modality space according to
the gram matrix of tokens (Ryu et al., 2023; Peebles & Xie,
2023), thus compressing the semantics of each modality and
serving as a transfer for other modalities. Thus, the duplex
attention alignment consists of V-Aligner and T-Aligner
responsible for visual and language modality, respectively.

This leads to the formal introduction of the De cit Disorder
Attention (DDA) problem. Given the visual toker$ and
text tokensx} in the blockl, the multimodal attention builds
the link from two partsi(e., self-modai} ! x{*1;x!, !

x/1 and cross-modad} ! x!*1:x! 1 x{*! ), where the
links are commonly implemented by the pair-wise token
similarity and weighted sum. However, the modality gapSpeci cally, for them™ modality, the space bases are given
between tokens decrease the magnitude of links, as we o@ecording to the normed gram matjpG™jj 2 RY ¢,
served, the link value of, ! x** andx{ ! x| decays whereG] is the inner product between tokenandj :

exponentially with depth (,,, , / '; 6 1). This mis-
alignment propagates layer-wise, causing the cumulative . Xm - s
error in cross-modal interaction to grow as Gy = KikKig = KTK™; ()
Y k=1
Eppa = ok 4)

| whereK ™ are the key states of tme™ modality tokens and

. . . Np, isthe number of token belong to modality. By includ-
where | denotes the layer-speci ¢ alignment error. This ¢ e hase vectors of the space de ned by the Gram matrix,
phenomenon aligns with the theoretical insights in (Dong e can effectively capture the relationships among the to-

etal., 2021), where pure attention mechanisms experiengg,ng within them™ modality. This allows us to construct
rank collapse, a critical factor that exacerbates the |mbalanc§ feature representation that is not only rich in information

in attention distribution. but also maintains the intrinsic structure of the data.

3.3. MOdular Duplex Attention As a following product, the normed gram matrix serves as
a cross-modal token transfer function, enabling an ef cient

When the gap across modalities arises, we propose to aligiansformation of tokens from other modality into the
the tokens from mUltlple modalities in the attention, which moda“tym as a kernelized mappmg functién: Rd | Rd_

we call modular duplex attention (MODA) MODA rst The a”gned tokens are Computed as follows:
splits multimodal attention into the modality alignment part
and the token focus correction part. KM ™ =KmM™jiG"j; (6)

Duplex Attention Alignment To reduce the modality whereK ™ represents the value representation from other
inconsistency, a natural idea is to align them. Inspired by thenodalitiesm. The mapped tokens are further fused with
recent advance of visual-language embedding space mape original ones to enhance the token similarity among
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Table 1.Ablation Study. We conduct experiments on four types of multimodal tasks, including generaBpAiiowledge QA K),
OCR&Chart QA ), and vision-centric QAY). The lines with blue shallow indicate the optimal setting for our method. If not otherwise
speci ed, this setting is used for all subsequent experiments.

(a) Module (b) Attention Alignment (c) Attention Fusion (d) Attention Mask
MDM DAA | G K O V aign | G K O VvV  fusion] G K O V mask G K O V
- - 63.6 440 60.8 38.0 MLP 69.5 475 66.8 46.0 X, | 69.2 454 60.9 426 Inf | 67.8 47.6 63.3 48.1
X - 69.2 454 60.9 42.6 +2xMLP | 66.5 48.6 67.9 49.1 X, | 67.8 47.6 63.3 48.1 Fix | 70.1 49.0 67.0 52.3
- X | 678 47.6 633 481 +GeLU | 695 49.1 64.0 542 Con | 69.3 48.3 67.0 54.3 Atin.| 69.3 48.3 67.0 54.3
X X | 69.3 483 67.0 543 +CoV 69.3 48.3 67.0 54.3 Add | 62.2 47.6 67.2 52.2 [M] | 69.5 47.5 66.8 46.0

all the modalities. Due to the substantial computationalmatrix to serve as a critical indicator, guiding the model
expense associated with training a complete MLLM, wein identifying which components should leverage modality
utilize token merging and LoRA-based tuning to develop thelocation priors. This separation allows for more precise
fuser. Notably, the computation in the alignment stage keepsontrol over how tokens from the same modality interact
linear complexity to the token number, since the matrix sumwith each other versus how they engage with tokens from
among tokens is only conducted in the rst round. other modalities. The self-modal attention, represented by
Oself , focuses on re ning the relationships within the same
Modular Attention Mask  Attention mask controls the modality, ensuring that relevant information is effectively
ow of tokens across transformer layers and induces thepropagated through the layers. Conversely, the cross-modall
positional bias for MLLM (Wu et al., 2024). To better tthe attention, denoted b@.ss , facilitates the exchange of
requirements of the multimodal token sequence, we assigimformation between distinct modalities, enabling the model
a modulated attention mask for each modality, where theo leverage complementary features.
mask is split intoavi ™ andM ™ responsible for self- and

cross-modality, respectively. 4. Experiment

Ocer Softma>(Qm Km> +M™yVm:  (7) 41 Benchmark Datasets

QmK m> Perception Following (Tong et al., 2024a), we conduct
= +MM™MV™: (8 experiments on 4 types of perception tagk.(general,
knowledge, ocr, and vision-centric) across 16 benchmarks:

MME (Fu et al., 2023), MMBench (Liu et al., 2025),

To alleviate the collapsed attention matrix and prevent itSEED (Li et al., 2024), GQA (Hudson & Manning, 2019)

from under-smoothed tokens. We rst introduce a mOdUIarScienceQA (Lu et al., 2022), MMMU (Yue et al., 2024),

RfathVista (Lu et al., 2024), AI2D (Kembhavi et al., 2016),
VEhartQA (Masry et al., 2022), OCRBench (Liu et al., 2024),
. TextVQA (Singh et al., 2019), DocVQA (Mathew et al.,
quence length that the token can attend to is xedhat 5451y “\ivivp (Tong et al., 2024b), RealworldQA (xAl,
Consequently, each row contains i pseudo-attention 2024), and CV-Bench (Tong et al., 2024a). We adopt GPT4
scores, which are allocated to the excess values. The at-_ " '

. ; * Acore to evaluate response.
tention scores are formally represented using a masking

Ocross = Softmax

attention mask that stores unnecessary attention values
pseudo-attention scores (Yin et al., 2024). For each ro
representing the attention scores for tkth token, the se-

strategy with a decay rate as follows: Cognition: Following (Dai et al., 2025), we conduct exper-

1 iments on MMRole to evaluate role-playing performance
d1k7 P11 Pin 1) from 8 aspects: instruction adherence, uency, coherency,
dkT  G2k3 Pin 2 image-text relevance, response accuracy, personality consis-

Aum = : : . : ©) tency, knowledge consistency, and tone consistency.
Onk7  Onk3 ankp Emotion: Following (Yang et al., 2023; Huang et al., 2024),
Phase =0;Pj = Prase (| 1) (10)  We conduct experiments on 4 benchmark datasets. MVSA-S

and MVSA-M (Niu et al., 2016) are datasets used for sen-

timent polarity classi cation (positive or negative), while

Excgpt for the absolute _Iocatlon_ prior information, we fur-.l_umEmO (Yang et al., 2021) is a multimodal dataset de-
ther introduce the modality location to enforce the model toSi ned for classifying six basic emotions. Additionall
correct the token ow. We introduce the normed gram ma-, 9 g ' Y.

) . . .. HFM (Liu et al., 2022) is a multimodal dataset focused on
trix as an indicator, to nd out the part should be carried with o . R .
. . . ) recognizing high-level implicit emotion of sarcasm.
modality location priors. We introduce the normed Gram

5
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Model General Knowledge OCR & Chart Visi(on—Centric
N o [a) a

o n _ 2 > 4 m o o a8 g o @

o 2 2 B 3|2 % £ § 8|g 2 5 % 3|2 2 § % %
Method| 2 = 5 ® oz 3 5 2 2|2 6 © & 8|z 5 & & ©
GPT-4V| 63.0 14094 758 69.1 368652 757 56.8 499 78p77.4 785 645 780 884624 500 614 643 738
Gemini-1.0 Pro| - 1496.6 73.6 70.7 -| - 795 479 452 -| - - 659 - - - - - - -
Gemini-1.5 Pro| - - - - - - - 585 521 803 - 813 - 735 86.4 - 675 - -
Grok-1.5 - - - - - - 536 528 8383 - 761 78.1 854 - - 687 - -
MM-1-8B - 1529.3 72.3 69.9 - - 72.6 37.0 35.9 - - - - - - - - - - -

MM-1-30B - 1637.6 75.1 721 - - 81.0 44.7 39.4 - - - - - - - -

Base LLM: Llama-3-Ins-8B|
Mini-Gemini-HD-8B | 72.7 1606.0 72.7 73.2 644 55.7 751 37.3 37.0 735629 59.1 47.7 70.2 74p515 187 62.1 62.2 63.0
LLaVA-NeXT-8B | 72.5 1603.7 72.1 72.765.2|55.6 72.8 417 36.3 715639 695 49.0 646 72.p56.6 38.7 60.1 622 653
Cambrian-1-8B| 73.1 1547.1 759 74.7 64.6|/ 61.3 80.4 42.7 49.0 73.0|71.3 73.3 62.4 717 77.8|65.0 513 64.2 723 720
MODA-8B | 72.1 15359 73.8 74.9 63.0( 61.5 80.4 43.1 48.8 73.6|72.0 743 652 704 78.1|66.0 52.6 64.1 735 73.8

Base LLM: Hermes2-Yi-34
Mini-Gemini-HD-34B | 76.2 1659.0 80.6 75.3 65[862.4 77.7 48.0 43.4 80.p568.1 67.6 51.8 74.178.9|638 373 67.2 715 79.2
LLaVA-NeXT-34B | 76.0 1633.2 79.3759 67.1/ 625 81.8 46.7 46.5 74p67.7 68.7 545 695 78640 473 61.0 73.0 74.8
Cambrian-1-34B 76.8 1689.3 81.4 75.3 65.4 67.0 856 49.7 53.2 79.y719 756 60.0 76.7 755685 527 67.8 740 79.7
MODA-34B | 76.7 1639.2 82.3 75.8 66.2| 69.5 88.1 52,5 54.0 83.4( 74.7 79.8 62.7 78.3 78.2|69.9 53.8 68.5 758 81.3

Table 2.Comparison of MODA with other leading MLLM framework on twelve perception benchmarks. MODA outperforms other
open-source models and achieves competitive performance on a number of benchmarks, compared to proprietary models such as GPT-4V,
Gemini, and Grok-1.5. The reported numbers of leading MLLMs come from (Tong et al., 2024a).

4.2. Settings enhance multimodal attention?

We set the same experiment setting as (Tong et al., 2024a;

Liu et al., 2023). We adopt CLIP (ViT-L/14) (Radford

et al., 2021) as the visual encoder. For the foundationqlh

large language model, we choose models from differen& LS " :
i ross-modal feature transfer by examining its ability to align

scalesj.e., 8B: Llama-3-Instruct-8B (Dubey et al., 2024) y g y 9

i A modality-speci ¢ features along a shared latent axis. This is
and 348: Hermes2-Yi-34B (Young et al., 2024). MO[?A motivated by the need to reduce modality gaps and ensure

is trained for 1 epoch with a batch size of 2048, USINGeftective information exchange between modalities. We de-

the AdamW (Loshchilov & Hutter, 2019) optimizer with sign experiments to test different variants of duplex attention

g ccs)s%lneLlf,\a/lrnlndgzratgfschgdul;a. Th?jlearmng r?tells ?_Et r:ﬂignment, such as using covariance matrices, attention head
e-ofor and e-o lor visual encoder, respectively. 1he ., , gurations, and linear vs. non-linear transformations.
warmup rate is 0.03.

Response to RQ1: Modality Axis Transfer we analyze
e effectiveness of duplex attention alignment in facilitating

) Response to RQ2: Modality Position Bias we investi-
4.3. Ablation Study gate the role of the modular attention mask in addressing

To investigate the effectiveness of duplex attention a”gn[nodality position bias and improving attention distribution.

ment and modular attention mask, we conduct a componenT—hiS analysis is crucial for understanding how the mask pre-

wise ablation study in Table 1. For ablation studies, we train/€nts attention collapse and ensures balanced contributions
the MLLMs at the scale of 8B, with the base LLM of Llama- Tom all modalities. We experiment with different masking
3-Ins-8B. For a fair comparison, all models are trained ofi"échanisms, such as traditional in nity masking, x-valued
700K data samples for 1 epoch. We further discuss eaciasking, and learnable masking. These variants are eval-

component by conducting in-depth analyses of their variant$/at€d on tasks involving long sequences and imbalanced
to answer the following research questions. modality contributions, such as vision-centric perception

and knowledge understanding.

* RQ1: How does the design of duplex attention align-

. Response to RQ3: Multimodal Attention Matrix we
ment impact cross-modal feature transfer?

analyze the interaction between duplex attention alignment
« RQ2: How does the modular attention mask addresnd modular attention mask by studying their combined
modality position bias and improve attention? effect on the multimodal attention matrix. This is motivated
by the hypothesis that the two components work synergis-
* RQ3: How do the proposed duplex attention alignmenttically to improve multimodal representation learning by
and modular attention mask respectively interact toenhancing both alignment and attention distribution. We de-
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Model Cognition > =
@ o) c g
2 o > 2 2
o = %) 7} %}
[ ] I B B >
o 2 5 c c 2
< 2 o o o 5
2 o o 8} @) 5
< > b3 < > (0] %
c 9 3 @ £ =] =
2 > S P 2 © ° S
15} [9) o b S c Q o
E] = [} S o 3 2 ©
o H % < @ 0 e o c
g [ =] S £ [0} © c S
Method| < £ o o = /4 o X =

GPT-4 Turbo| 1.099 1.055 1.032 1.084 1.097 1.092 1.168 1.103 1.161
Gemini 1.0 Pro| 1.021 0.999 1.007 1.028 1.009 1.013 1.052 1.013 1.050
Claude 30pug 1.157 1.127 1.070 1.149 1167 1.146 1219 1.168 1.213
QWen-VL-Max | 1.028 1.014 1.012 1.035 1.034 1.029 1042 1.021 1.041
Base: Llama-3-Ins-8B
Mini-Gemini-HD-8B | 0.878 0.884 0.942 0.898 0.864 0.853 0.855 0.876 0.852
LLaVA-NeXT-8B | 0.968 0.971 0.988 0980 0.966 0.967 0.966 0.964 0.939
Cambrian-1-8B| 0.895 0.901 0.957 0.934 0.886 0.889 0.860 0.892 0.838 . .
MODA-8B | 0.972 0.976 0.992 0.985 0.970 0.972 0.970 0.969 0.945 () Multimodal Attention (b) MODA
Cognition-Specialized . . . . .
MMRole-9B | 0.994 0.998 1.000 0.9970.993 0.987 1.000 0.992 0.988  Figure 4.Analysis of multimodal attention and MODA. (a) Multi-
VRl Q“Q?IDAT'SBO gggg 11%%% 1-10830 0-399%90-%993970-9328;-031()&22% %%8987 modal attention: average difference between self and cross-modal
ole- n-lesi . . . . . . o . . . .
MODA-8B (In-Test)| 1.000 1.002 1.001 1.000 0.998 0.992 1.013 0.996 0.996 attention is 56.97% for text and 62.44% for visual. (b) MODA:
MMRole-9B (Out-Test)| 0.981 0.992 0.999 0.993 0.979 0981 0963 0977 0962 average difference is 50.31% for text and 41.01% for visual.
MODA-8B (Out-Test)| 0.984 0.995 1.002 0.996 0.981 0.983 0.970 0.980 0.965

Table 3.Comparison of MODA with other leading MLLMs and
cognition task-specialized methods on MMRole benchmark.
The numbers of leading MLLMs come from (Dai et al., 2025).

Perception Benchmark. To assess the effectiveness of
our proposed model, we compare it against state-of-the-art
Multimodal Large Language Models (MLLMs), including
Model Emotion the Mini-Gemini-HD series, the LLaVA-NeXT series, and
the Cambrian-1 series. We conduct a comparison under two
settings, where we tune these MLLMs from 8B and 34B
scale large foundation models. Our proposed MODA out-
performs other models of similar scale, including LLaVA-
vethod| 5 2 2 2 NeXT and Cambrian, achieving an average improvement

GPT-4V | 0.633 0507 0570 0609 0631 0608 0612 o764 0765 Of 1.0 for the base Llama-3-Ins-8B model and 0.9 for the
oot be O 0 0% B 0% 070 0 base Hermes2-Yi-348 model. In vision-centric and OCR
QWen-VL-Max | 0.643 0.647 0.645 0.669 0.627 0.565 0.595 0.696 0.701 tasks, which require ne-grained understanding, MODA
Bl\jlsrﬁéleﬂ;igssglz 0.482 0.423 0.571 0.4870.643 0.246 0.395 0.4980.593 ConSiStently performs better’ aChieVing a metric Of 660 for
LLaVA-NeXT-8B | 0576 0.591 0593 0.617 0607 0.547 0533 0572 0551 the vision-centric average and 74.7 for OCR & Chart tasks.

Cambrian-1-8B| 0.547 0.694 0.661 0.662 0.579 0.439 0.344 0.512 0.487 . H . 1 HR . .
e Lt o o o) o b AL s s This highlights the model's ability in tasks demanding ne-

MVSAM (F1)
TumEmo (ACC)
TumEmo (F1)
HFM (ACC)
HFM (F1)

Emotion-Specialized grained perception, further reinforcing its superiority.
M2CL - 0.755 0.742 0.732 0.705 0.688 0.687 -
MULSER| - 0757 0755 0.739 0.738 0.775 0.775 - o . . ]
CMGCN| - 0733 0720 0697 0683 - - 0875 0841 Cognition-speci ¢ & Emotion-speci ¢ Benchmark.
SPPVIE) - 0806 080L 0.799 0788 - - - 0883 0879 \We evaluate a diverse set of MLLMs on both cognition-

MODA-8B | 0.841 0.810 0.803 0.802 0.790 0.778 0.778 0.885 0.881 R . i i
centric and emotion-centric benchmarks, designed to as-

Table 4.Comparison of MODA with other leading MLLMs sess key dimensions of cognitive and emotional understand-
as well as emotion task-specialized methods on four emotion jng across various aspects. On the cognition benchmark,
benchmarks. The reported numbers of emotion-specialized meth\ opa outperforms open-ended models of Cambrian-1
ods come from their of cial manuscripts. The missed average per(0.981) and LLaVA-NeXT (0.979), achieving an average
formance of emotion-specialized methods due to missed datasets, .o 0.996, and performs comparably to close-ended
SOTA models like Claude 3 Opus (0.995). With cognition

sign experiments that compare the joint use of these comp&2SK-speci ¢ tuning, MODA achieves better performance,
nents against their individual use, as well as against baseling@rticularly excelling in uency (0.999) and personality

models without either component. Tasks such as questiofPnSistency (0.998). On emotion benchmarks, MODA out-
answering and multimodal summarization are chosen t&€fforms open-ended models like Cambrian-1 (0.628) and

simultaneously evaluate alignment and distribution. LLaVA-NeXT (0.624), with an average score of 0.657, and
achieves comparable performance to task-specialized SOTA
4.4. Results models like SPFVTI_E (0.738) and MULSER (0.739). No-
tably, MODA excels in TumEmo (0.747) and HFM (0.753)
As shown in Table 2, Table 3, and Table 4, we demonstratbenchmarks, demonstrating strong performance in emotion
the main results on 21 popular benchmarks for multimodarecognition tasks due to its ability to capture ne-grained
perception, cognition, and emotion tasks, respectively.  emotional features and ne-grained detalils.



MODA: MOdular Duplex Attention for Multimodal Perception, Cognition, and Emotion

(a) Fine-grained Perception

(b) Cognitive Conversation Analysis

(c) Emotion Understanding

Figure 5.Visualization results of state-of-the-art (SOTA) Multimodal Large Language Models (MLLMs) and our proposed MODA on
ne-grained multimodal tasks, including perception, cognition, and emotion understanding.

Analysis of Attention. We analyze the attention distribu-
tion to evaluate the effectiveness of the proposed MODA in
terms of attention distribution (Fig. 4). We conduct exper-
iments on ne-grained understanding taske,, emotion
recognition based on visual-textual affective cues. Base-
line attention exhibits imbalanced scores, particularly in
deeper layers, highlighting its tendency to over-focus on
dominant modalities while neglecting otherg( visual af-
fective cues). Our MODAachieves consistently high across
all layers, preventing degradation and ensuring balanced
contributions from all tokens and modalities. This improve-
ment directly correlates with superior performance on multi-
modal tasks, particularly those requiring ne-grained under- (a) Understandingodfather
standing, such as TumEmo and OCRBench, demonstrating
MODA' ability to avoid attention collapse and capture mul-
timodal interactions effectively.

Visualization To highlight the advantages of Modular
Duplex Attention (MODA), we design a visualization exper-
iment focusing on output answers, showcasing its capacity
to generate ne-grained and accurate responses. The output
answers (Figure 5) further demonstrate MODA's superior
capacity for ne-grained understanding. By accurately cap-
turing the humorous twist on the classic poem, MODA
has demonstratqd its unparglleled ability to reason about (b) Planning forGodfather
ne-grained multimodal details. These results underscore _ _

MODAS transformative potential in advancing the state-of-"'9ure 6.MODA-enabled apps ifihe Godfather(a) With a deep
. . . . and ne-grained understanding of conversation, MODA captures
the-art in multimodal understanding, where it seamlessl

int tes inf i dalities t hi )ﬁoth the emotional and cognitive states of the character. (b)
Integrates information across modaliies 1o achieve eXCeRanpa further simulates th&odfathels strategic thinking, plan-

tional precision in complex cognitive and emotional tasks. ning the next steps while considering the characters traits.



