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Abstract

Multimodal large language models (MLLMs) re-
cently showed strong capacity in integrating data
among multiple modalities, empowered by a gen-
eralizable attention architecture. Advanced meth-
ods predominantly focus on language-centric tun-
ing while less exploring multimodal tokens mixed
through attention, posing challenges in high-level
tasks that require fine-grained cognition and emo-
tion understanding. In this work, we identify the
attention deficit disorder problem in multimodal
learning, caused by inconsistent cross-modal at-
tention and layer-by-layer decayed attention ac-
tivation. To address this, we propose a novel
attention mechanism, termed MOdular Duplex
Attention (MODA), simultaneously conducting
the inner-modal refinement and inter-modal in-
teraction. MODA employs a correct-after-align
strategy to effectively decouple modality align-
ment from cross-layer token mixing. In the
alignment phase, tokens are mapped to duplex
modality spaces based on the basis vectors, en-
abling the interaction between visual and lan-
guage modality. Further, the correctness of atten-
tion scores is ensured through adaptive masked
attention, which enhances the model’s flexibility
by allowing customizable masking patterns for
different modalities. Extensive experiments on
21 benchmark datasets verify the effectiveness
of MODA in perception, cognition, and emotion
tasks. Source code and demo are available in
https://zzcheng.top/MODA.
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Corleone: A man who doesn't spend time 
with his family can never be a real man

SOTA (LLaVA-NeXT):  In the dialogue, we see 
a scene from a film where two characters 
(       :three), are engaged in a conversation. 
The character on the left, who appears to be a 
man in a suit and tie, is speaking to the 
character on the right, who is wearing a tuxedo 
with a red flower on the lapel. The character 
on the right is looking down (       :looking at 
Johnny), possibly at a piece of paper or a 
small object in his hand, and his expression is 
one of peace or contemplation (       :gravity).
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Figure 1. Illustration of deficit disorder attention problem. (a)
Given the detailed image and lines from The Godfather, (b) we
highlight incorrect responses, corresponding hallucinated explana-
tions, and attached answers. (c) We visualize attention score across
layers, highlighting inconsistent attention across modalities.

1. Introduction
Benefiting from the blossom of large language models (Chi-
ang et al., 2023; Dubey et al., 2024; Teknium et al.,
2024), multimodal large language models (MLLMs) have
shown strong capacity in integrating multimodal data as
human (Tong et al., 2024a; Brown et al., 2020; Bai et al.,
2023), which illuminate a promising pathway toward Artifi-
cial General Intelligence (AGI). Advanced effort has been
devoted to constructing MLLM (Achiam et al., 2023), fo-
cusing on exploring more insightful data curation, model
tuning, and evaluation benchmarks. As the controller of
agent, MLLMs provide a natural solution by conducting
content perception (Liu et al., 2023), understanding role
cognition (Dai et al., 2025), and analyzing human emo-
tion (Yang et al., 2024). One more step forward into AGI
lies in high-level multimodal understanding like humans, in-
cluding cognition and emotion. Cognition, as a higher-level
capability, requires the ability to model relationships and
reasoning across modalities (Dai et al., 2025; Pessoa, 2022).
Beyond cognition, emotion understanding is another critical
aspect of fine-grained multimodal comprehension (Yang
et al., 2024; Zhang et al., 2023). These high-level multi-
modal tasks pose new challenges for MLLMs.
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While recent MLLMs show promising results in basic
perception, they still struggle to perceive �ne-grained de-
tails (Tong et al., 2024b), which is essential for understand-
ing cognition and emotion. Public benchmarks reveal that
these advanced MLLMs can underperform relative to ran-
dom guessing (Yang et al., 2024), with 3 SOTAs achieving
approximately 50:50 accuracy in 2-class sarcasm detection
on the HFM dataset. This phenomenon arises from an ex-
cessive emphasis on the dominant modality data, leading to
neglect of �ne-grained details in alternative modality.

We delve deep into the reason and analyze the multimodal
tokens mixed by attention in MLLM. As shown in Fig. 1
(a)&(b), we observe that SOTA MLLM struggles to capture
�ne-grained details (e.g., eyesights of character), leading
to error in emotion understanding. The reason behind this
is inconsistent attention across multiple layers in MLLM
(63% disparity in Fig. 1 (c)), which we call de�cit disorder
attention problem. On the one hand, the attention scores
in MLLM exhibit a bias towards the language component.
On the other hand, layer-by-layer decay of attention further
accentuates this disparity. As a result, the attention score
disparity across modalities can reach up to 10 times.

Our intuition is that multimodal attention mechanisms often
suffer from imbalances between self-modal and cross-modal
interactions, leading to suboptimal feature co-operation
across modalities. By explicitly separating and modulat-
ing these two components, we can better align multimodal
features while preserving the unique characteristics of each
modality. To achieve this, we propose MOdular Duplex
Attention (MODA), which splits attention into self-modal
and cross-modal parts, each with its own modulated atten-
tion mask. The self-modal attention component focuses on
capturing the intrinsic relationships within individual modal-
ities. In contrast, the cross-modal attention component is
responsible for aligning features across different modalities,
facilitating effective information exchange. At the core of
the MODA model is the Duplex (V/T)-Aligner, which maps
the tokens into a shared dual-modality representation space
de�ned by two gram matrices. Additionally, the Modular
Masked Attention component allows the model to adaptively
focus on relevant modalities by applying customized mask-
ing patterns, further enhancing its �exibility on multimodal
understanding tasks.

Our contributions are two-fold as follows: (1) From a novel
perspective of the attention shift mechanism, we indicate the
key bottleneck of attention among SOTA MLLMs and ana-
lyze the core reason in depth. We further propose a modular
and duplex attention mechanism based on our observation.
(2) We investigate a new MLLM for perception, cognition,
and emotion, enabling applications in �ne-grained under-
standing and planning. Extensive experiments on 21 bench-
marks verify the generalization and effectiveness of MODA.

2. Related Work

Multimodal large language model (MLLM) have gar-
nered signi�cant attention recently due to their ability
to integrate pre-trained foundational models, especially
powerful Large Language Models (LLMs)(Achiam et al.,
2023; Touvron et al., 2023), alongside multimodal en-
coders(Dosovitskiy et al., 2021; Radford et al., 2021). These
models enhance the processing of multimodal inputs and
outputs, as demonstrated in advanced works (Alayrac et al.,
2022; Bai et al., 2023). MLLMs leverage attention mecha-
nisms to facilitate multimodal token mixing, enabling both
inductive and deductive understanding across modalities.
However, the vision modality's potential remains underuti-
lized in many of these models. MMVP (Tong et al., 2024b)
identi�es a critical issue, highlighting how existing MLLMs
fail to fully activate the vision modality due to improper
handling of low-level visual attributes. Further, Cambrian-
1 (Tong et al., 2024a) con�rms this limitation and introduces
a spatial vision aggregator to enhance visual feature. In this
work, we investigate the root cause of these limitations,
identifying the bottleneck in the design of the multimodal
attention mechanism. To address the issue of imbalanced
attention scores, we propose a novel multimodal attention
that better balances the contributions of each modality.

Understanding cognition and emotion (Fu et al., 2023;
Yang et al., 2024) play an important role in the pathway
toward building an intelligent agent, except for content un-
derstanding demonstrated by prior MLLMs. As two of
high-level understanding, cognition (Wang et al., 2024a;
Kong et al., 2024; Salemi et al., 2024) typically refers to the
ability to make decisions and judgments similar to charac-
ters (Binz & Schulz, 2023; Wang et al., 2024c; Deshpande
et al., 2023), such as generating website code (Zhu et al.,
2024; Wang et al., 2025), or role playing (Chen et al., 2024;
Zhang et al., 2018). Emotion mainly depends on the psy-
chology assumptions (Zhao et al., 2021; Zhang et al., 2024),
where the categorical one is mostly used due to it being
easily understandable (Yang et al., 2018; Mai et al., 2022;
Lian et al., 2022; Zhang & Yang, 2022). However, it is less
explored due to its requirements for �ne-grained content
understanding, which MLLMs can hardly achieve.

Attention in MLLM plays a critical role in addressing
the computational and memory challenges inherent in their
design. Signi�cant progress has been made in develop-
ing ef�cient attention mechanisms for Transformer archi-
tectures, which include �xed patterns (Child et al., 2019),
combinations of patterns (Zaheer et al., 2020), learnable
patterns (Kitaev et al., 2020), neural memory (Beltagy et al.,
2020), low-rank methods (Wang et al., 2020), and kernel-
based techniques (Choromanski et al., 2021). For example,
the Set Transformer introduces inducing points to handle
set-input problems (Wang et al., 2020), while the Axial
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Figure 2.Analysis of existing MLLMs on four �ne-grained understanding tasks. (a) The distribution of attention activation values among
visual and textual tokens. (b) The attention map for multimodal tokens among stages. (c) The self- and cross-modal attention activation
scores with their disparity among the attention layers.

Transformer applies attention along individual axes of input
tensors, reducing computational overhead (Beltagy et al.,
2020). These innovations collectively enhance the scala-
bility of Transformer models, enabling their application to
tasks with large inputs or long sequences (Choromanski
et al., 2021; Han et al., 2024). While previous approaches
have focused on improving the ef�ciency and scalability
of attention in single-modal tasks, the multimodal context
introduces unique challenges, such as balancing attention
scores across heterogeneous modalities (Zhao et al., 2021).
Our work extends this line of research by speci�cally ad-
dressing the multimodal attention mechanism in MLLMs.

3. Methodology

3.1. Preliminary

� Attention Given the input multimodal tokens,X 2
RN � d, N be the number of tokens andd be the dimen-
sionality of the hidden state. LetA 2 RN � N denote the
attention score matrix computed amongN tokens, we have
A = QK > =� , and the output of attention layer as:

O = Softmax(
QK >

�
+ M )V : (1)

whereQ; K ; V 2 Rd� d represents query, key, and value
matrix derived from input tokens. Attention is also practi-
cally maskedM 2 RN � N to �lter out special tokens (Li
et al., 2023) or conduct causal sequential modeling (Wang
et al., 2024b; Achiam et al., 2023).

� Multimodal Attention Formally, consider a multimodal
token sequenceX M comprisingM modalities. The total
token length isNM = N1+ � � �+ NM , whereNm represents
the length of themth modality token sequenceX m . The
attention can be split into two parts for each modality token

sequence, self-modal attention and cross-modal attention.
We have(�)[m; �m ], which represents the tokens derived from
themth modality and rest. For the self-modal and cross-
modal attention, we have

Oself = Softmax(
Qm K m >

�
+ M )V m ; (2)

Ocross = Softmax(
Qm K �m >

�
+ M )V �m : (3)

3.2. De�cit Disorder Attention Problem

Recently, multimodal attention has played a very important
role in multimodal areas, including diffusion models that
involve cross-modal generation and MLLM that involves
cross-modal understanding. The attention mechanism gov-
erns token interactions by computing similarities and ap-
plying masks. To further investigate the Attention De�cit
Disorder (DDA) phenomenon, we conduct a series of analy-
ses on four categories of �ne-grained understanding tasks.

As shown in Fig. 2 (a), we observe that the attention devoted
to visual content is signi�cantly weaker compared to that
for the textual modality. This observation aligns with the
challenges faced by MLLMs �ne-tuned from autoregres-
sive models in handling �ne-grained visual perception. The
inherent design of MLLM, which is primarily optimized
for text-based tasks, may lead to an underrepresentation
of visual features when extended to multimodal contexts.
This imbalance highlights a critical limitation in the cur-
rent architecture, where the model's pro�ciency in textual
processing does not seamlessly translate to an equivalent ca-
pability. Further, we conduct experiments on Fig. 2 (b)&(c),
and we observe a distinct cross-attention bias in the lower
layers of the model across its 32 layers. This bias is notably
inconsistent with the distribution of attention in the higher
layers, which are known for their stronger representational
capabilities. Speci�cally, the lower layers tend to focus
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Figure 3.MOdular Duplex Attention. (a) MODA takes the image and contextual prompt as input, including the background and history of
the conversation. (b) With MODA, the token �ows are justi�ed in each Transformer block of MLLM. MODA modi�es the de�cient
attention scores in a correct-after-align manner via (c) Modular masked attention and (d) Duplex (V/T)-aligner.

disproportionately on cross-modal interactions, potentially
at the expense of effectively capturing intra-modal features,
leading to suboptimal multimodal integration.

This leads to the formal introduction of the De�cit Disorder
Attention (DDA) problem. Given the visual tokensx l

v and
text tokensx l

t in the blockl , the multimodal attention builds
the link from two parts (i.e., self-modalx l

t ! x l +1
t ; x l

v !
x l +1

v and cross-modalx l
t ! x l +1

v ; x l
v ! x l +1

t ), where the
links are commonly implemented by the pair-wise token
similarity and weighted sum. However, the modality gap
between tokens decrease the magnitude of links, as we ob-
served, the link value ofx l

v ! x l +1
v andx l

t ! x l +1
v decays

exponentially with depth (� l
v;t ! v /  l ;  6= 1 ). This mis-

alignment propagates layer-wise, causing the cumulative
error in cross-modal interaction to grow as

EDDA =
Y

l

 l � l ; (4)

where� l denotes the layer-speci�c alignment error. This
phenomenon aligns with the theoretical insights in (Dong
et al., 2021), where pure attention mechanisms experience
rank collapse, a critical factor that exacerbates the imbalance
in attention distribution.

3.3. MOdular Duplex Attention

When the gap across modalities arises, we propose to align
the tokens from multiple modalities in the attention, which
we call modular duplex attention (MODA). MODA �rst
splits multimodal attention into the modality alignment part
and the token focus correction part.

� Duplex Attention Alignment To reduce the modality
inconsistency, a natural idea is to align them. Inspired by the
recent advance of visual-language embedding space map-

ping in diffusion model (Rombach et al., 2022), we propose
mapping the token into the other modality space according
to the embedding space bases of the gram matrix. We ex-
tract the basis vector of each modality space according to
the gram matrix of tokens (Ryu et al., 2023; Peebles & Xie,
2023), thus compressing the semantics of each modality and
serving as a transfer for other modalities. Thus, the duplex
attention alignment consists of V-Aligner and T-Aligner
responsible for visual and language modality, respectively.

Speci�cally, for themth modality, the space bases are given
according to the normed gram matrixjjGm jj 2 Rd� d,
whereGm

ij is the inner product between tokensi andj :

Gm
ij =

N mX

k=1

K m
ik K m

kj = K m > K m ; (5)

whereK m are the key states of themth modality tokens and
Nm is the number of token belong to modalitym. By includ-
ing the base vectors of the space de�ned by the Gram matrix,
we can effectively capture the relationships among the to-
kens within themth modality. This allows us to construct
a feature representation that is not only rich in information
but also maintains the intrinsic structure of the data.

As a following product, the normed gram matrix serves as
a cross-modal token transfer function, enabling an ef�cient
transformation of tokens from other modality�m into the
modalitym as a kernelized mapping functionf : Rd ! Rd.
The aligned tokens are computed as follows:

K �m ! m = K �m jjGm jj ; (6)

whereK �m represents the value representation from other
modalities �m. The mapped tokens are further fused with
the original ones to enhance the token similarity among
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Table 1.Ablation Study. We conduct experiments on four types of multimodal tasks, including general QA (G), knowledge QA (K),
OCR&Chart QA (O), and vision-centric QA (V). The lines with blue shallow indicate the optimal setting for our method. If not otherwise
speci�ed, this setting is used for all subsequent experiments.

(a)Module

MDM DAA G K O V

- - 63.6 44.0 60.8 38.0
X - 69.2 45.4 60.9 42.6
- X 67.8 47.6 63.3 48.1
X X 69.3 48.3 67.0 54.3

(b) Attention Alignment

align G K O V

MLP 69.5 47.5 66.8 46.0
+2xMLP 66.5 48.6 67.9 49.1
+GeLU 69.5 49.1 64.0 54.2
+CoV 69.3 48.3 67.0 54.3

(c) Attention Fusion

fusion G K O V

X p 69.2 45.4 60.9 42.6
X a 67.8 47.6 63.3 48.1
Con 69.3 48.3 67.0 54.3
Add 62.2 47.6 67.2 52.2

(d) Attention Mask

mask G K O V

Inf 67.8 47.6 63.3 48.1
Fix 70.1 49.0 67.0 52.3
Attn. 69.3 48.3 67.0 54.3
[M] 69.5 47.5 66.8 46.0

all the modalities. Due to the substantial computational
expense associated with training a complete MLLM, we
utilize token merging and LoRA-based tuning to develop the
fuser. Notably, the computation in the alignment stage keeps
linear complexity to the token number, since the matrix sum
among tokens is only conducted in the �rst round.

� Modular Attention Mask Attention mask controls the
�ow of tokens across transformer layers and induces the
positional bias for MLLM (Wu et al., 2024). To better �t the
requirements of the multimodal token sequence, we assign
a modulated attention mask for each modality, where the
mask is split intoM m andM �m responsible for self- and
cross-modality, respectively.

Oself = Softmax(
Qm K m >

�
+ M m )V m ; (7)

Ocross = Softmax(
Qm K �m >

�
+ M �m )V �m : (8)

To alleviate the collapsed attention matrix and prevent it
from under-smoothed tokens. We �rst introduce a modular
attention mask that stores unnecessary attention values as
pseudo-attention scores (Yin et al., 2024). For each row,
representing the attention scores for thei -th token, the se-
quence length that the token can attend to is �xed atn.
Consequently, each row containsn � i pseudo-attention
scores, which are allocated to the excess values. The at-
tention scores are formally represented using a masking
strategy with a decay rate� , as follows:

AMM =

0

B
B
B
@

q1k >
1 p11 � � � p1(n � 1)

q2k >
1 q2k >

2 � � � p1(n � 2)
...

...
...

...
qn k >

1 qn k >
2 � � � qn k >

n

1

C
C
C
A

(9)

pbase = 0 ; pij = pbase � (j � 1)� (10)

Except for the absolute location prior information, we fur-
ther introduce the modality location to enforce the model to
correct the token �ow. We introduce the normed gram ma-
trix as an indicator, to �nd out the part should be carried with
modality location priors. We introduce the normed Gram

matrix to serve as a critical indicator, guiding the model
in identifying which components should leverage modality
location priors. This separation allows for more precise
control over how tokens from the same modality interact
with each other versus how they engage with tokens from
other modalities. The self-modal attention, represented by
Oself , focuses on re�ning the relationships within the same
modality, ensuring that relevant information is effectively
propagated through the layers. Conversely, the cross-modal
attention, denoted byOcross , facilitates the exchange of
information between distinct modalities, enabling the model
to leverage complementary features.

4. Experiment

4.1. Benchmark Datasets

Perception: Following (Tong et al., 2024a), we conduct
experiments on 4 types of perception task (i.e., general,
knowledge, ocr, and vision-centric) across 16 benchmarks:
MME (Fu et al., 2023), MMBench (Liu et al., 2025),
SEED (Li et al., 2024), GQA (Hudson & Manning, 2019),
ScienceQA (Lu et al., 2022), MMMU (Yue et al., 2024),
MathVista (Lu et al., 2024), AI2D (Kembhavi et al., 2016),
ChartQA (Masry et al., 2022), OCRBench (Liu et al., 2024),
TextVQA (Singh et al., 2019), DocVQA (Mathew et al.,
2021), MMVP (Tong et al., 2024b), RealworldQA (xAI,
2024), and CV-Bench (Tong et al., 2024a). We adopt GPT4
score to evaluate response.

Cognition: Following (Dai et al., 2025), we conduct exper-
iments on MMRole to evaluate role-playing performance
from 8 aspects: instruction adherence, �uency, coherency,
image-text relevance, response accuracy, personality consis-
tency, knowledge consistency, and tone consistency.

Emotion: Following (Yang et al., 2023; Huang et al., 2024),
we conduct experiments on 4 benchmark datasets. MVSA-S
and MVSA-M (Niu et al., 2016) are datasets used for sen-
timent polarity classi�cation (positive or negative), while
TumEmo (Yang et al., 2021) is a multimodal dataset de-
signed for classifying six basic emotions. Additionally,
HFM (Liu et al., 2022) is a multimodal dataset focused on
recognizing high-level implicit emotion of sarcasm.

5



MODA: MOdular Duplex Attention for Multimodal Perception, Cognition, and Emotion

Model General Knowledge OCR & Chart Vision-Centric

Method A
vg

M
M

E
P

M
M

B

S
E

E
DI

G
Q

A

A
vg

S
Q

AI

M
M

M
U

V

M
at

hV
is

ta
M

A
I2

D

A
vg

C
ha

rt
Q

A

O
C

R
B

en
ch

Te
xt

V
Q

A

D
oc

V
Q

A

A
vg

M
M

V
P

R
ea

lw
or

ld
Q

A

C
V-

B
en

ch
2D

C
V-

B
en

ch
3D

GPT-4V 63.0 1409.4 75.8 69.1 36.865.2 75.7 56.8 49.9 78.277.4 78.5 64.5 78.0 88.462.4 50.0 61.4 64.3 73.8
Gemini-1.0 Pro - 1496.6 73.6 70.7 - - 79.5 47.9 45.2 - - - 65.9 - - - - - - -
Gemini-1.5 Pro - - - - - - - 58.5 52.1 80.3 - 81.3 - 73.5 86.5 - - 67.5 - -

Grok-1.5 - - - - - - - 53.6 52.8 88.3 - 76.1 - 78.1 85.6 - - 68.7 - -
MM-1-8B - 1529.3 72.3 69.9 - - 72.6 37.0 35.9 - - - - - - - - - - -

MM-1-30B - 1637.6 75.1 72.1 - - 81.0 44.7 39.4 - - - - - - - - - - -
Base LLM: Llama-3-Ins-8B

Mini-Gemini-HD-8B 72.7 1606.0 72.7 73.2 64.5 55.7 75.1 37.3 37.0 73.562.9 59.1 47.7 70.2 74.651.5 18.7 62.1 62.2 63.0
LLaVA-NeXT-8B 72.5 1603.7 72.1 72.765.2 55.6 72.8 41.7 36.3 71.663.9 69.5 49.0 64.6 72.656.6 38.7 60.1 62.2 65.3

Cambrian-1-8B 73.1 1547.1 75.9 74.7 64.6 61.3 80.4 42.7 49.0 73.0 71.3 73.3 62.4 71.7 77.8 65.0 51.3 64.2 72.3 72.0
MODA-8B 72.1 1535.9 73.8 74.9 63.0 61.5 80.4 43.1 48.8 73.6 72.0 74.3 65.2 70.4 78.1 66.0 52.6 64.1 73.5 73.8

Base LLM: Hermes2-Yi-34B
Mini-Gemini-HD-34B 76.2 1659.0 80.6 75.3 65.862.4 77.7 48.0 43.4 80.568.1 67.6 51.8 74.1 78.9 63.8 37.3 67.2 71.5 79.2

LLaVA-NeXT-34B 76.0 1633.2 79.3 75.9 67.1 62.5 81.8 46.7 46.5 74.967.7 68.7 54.5 69.5 78.164.0 47.3 61.0 73.0 74.8
Cambrian-1-34B 76.8 1689.3 81.4 75.3 65.8 67.0 85.6 49.7 53.2 79.771.9 75.6 60.0 76.7 75.568.5 52.7 67.8 74.0 79.7

MODA-34B 76.7 1639.2 82.3 75.8 66.2 69.5 88.1 52.5 54.0 83.4 74.7 79.8 62.7 78.3 78.2 69.9 53.8 68.5 75.8 81.3

Table 2.Comparison of MODA with other leading MLLM framework on twelve perception benchmarks. MODA outperforms other
open-source models and achieves competitive performance on a number of benchmarks, compared to proprietary models such as GPT-4V,
Gemini, and Grok-1.5. The reported numbers of leading MLLMs come from (Tong et al., 2024a).

4.2. Settings

We set the same experiment setting as (Tong et al., 2024a;
Liu et al., 2023). We adopt CLIP (ViT-L/14) (Radford
et al., 2021) as the visual encoder. For the foundational
large language model, we choose models from different
scales,i.e., 8B: Llama-3-Instruct-8B (Dubey et al., 2024)
and 34B: Hermes2-Yi-34B (Young et al., 2024). MODA
is trained for 1 epoch with a batch size of 2048, using
the AdamW (Loshchilov & Hutter, 2019) optimizer with
a cosine learning rate schedule. The learning rate is set to
2e-5 for LLM and 2e-6 for visual encoder, respectively. The
warmup rate is 0.03.

4.3. Ablation Study

To investigate the effectiveness of duplex attention align-
ment and modular attention mask, we conduct a component-
wise ablation study in Table 1. For ablation studies, we train
the MLLMs at the scale of 8B, with the base LLM of Llama-
3-Ins-8B. For a fair comparison, all models are trained on
700K data samples for 1 epoch. We further discuss each
component by conducting in-depth analyses of their variants
to answer the following research questions.

• RQ1: How does the design of duplex attention align-
ment impact cross-modal feature transfer?

• RQ2: How does the modular attention mask address
modality position bias and improve attention?

• RQ3: How do the proposed duplex attention alignment
and modular attention mask respectively interact to

enhance multimodal attention?

� Response to RQ1: Modality Axis Transfer we analyze
the effectiveness of duplex attention alignment in facilitating
cross-modal feature transfer by examining its ability to align
modality-speci�c features along a shared latent axis. This is
motivated by the need to reduce modality gaps and ensure
effective information exchange between modalities. We de-
sign experiments to test different variants of duplex attention
alignment, such as using covariance matrices, attention head
con�gurations, and linear vs. non-linear transformations.

� Response to RQ2: Modality Position Bias we investi-
gate the role of the modular attention mask in addressing
modality position bias and improving attention distribution.
This analysis is crucial for understanding how the mask pre-
vents attention collapse and ensures balanced contributions
from all modalities. We experiment with different masking
mechanisms, such as traditional in�nity masking, �x-valued
masking, and learnable masking. These variants are eval-
uated on tasks involving long sequences and imbalanced
modality contributions, such as vision-centric perception
and knowledge understanding.

� Response to RQ3: Multimodal Attention Matrix we
analyze the interaction between duplex attention alignment
and modular attention mask by studying their combined
effect on the multimodal attention matrix. This is motivated
by the hypothesis that the two components work synergis-
tically to improve multimodal representation learning by
enhancing both alignment and attention distribution. We de-
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GPT-4 Turbo 1.099 1.055 1.032 1.084 1.097 1.092 1.168 1.103 1.161
Gemini 1.0 Pro 1.021 0.999 1.007 1.028 1.009 1.013 1.052 1.013 1.050
Claude 3 Opus 1.157 1.127 1.070 1.149 1.167 1.146 1.219 1.168 1.213

QWen-VL-Max 1.028 1.014 1.012 1.035 1.034 1.029 1.042 1.021 1.041
Base: Llama-3-Ins-8B

Mini-Gemini-HD-8B 0.878 0.884 0.942 0.898 0.864 0.853 0.855 0.876 0.852
LLaVA-NeXT-8B 0.968 0.971 0.988 0.980 0.966 0.967 0.966 0.964 0.939

Cambrian-1-8B 0.895 0.901 0.957 0.934 0.886 0.889 0.860 0.892 0.838
MODA-8B 0.972 0.976 0.992 0.985 0.970 0.972 0.970 0.969 0.945

Cognition-Specialized
MMRole-9B 0.994 0.998 1.000 0.9970.993 0.987 1.000 0.992 0.988

MODA-8B 0.995 1.000 1.001 0.999 0.993 0.989 1.001 0.991 0.988
MMRole-9B (In-Test) 0.999 1.000 1.000 0.999 0.997 0.989 1.0120.997 0.997

MODA-8B (In-Test) 1.000 1.002 1.001 1.000 0.998 0.992 1.013 0.996 0.996
MMRole-9B (Out-Test) 0.981 0.992 0.999 0.993 0.979 0.981 0.963 0.977 0.962

MODA-8B (Out-Test) 0.984 0.995 1.002 0.996 0.981 0.983 0.970 0.980 0.965

Table 3.Comparison of MODA with other leading MLLMs and
cognition task-specialized methods on MMRole benchmark.
The numbers of leading MLLMs come from (Dai et al., 2025).
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GPT-4V 0.633 0.507 0.570 0.609 0.631 0.608 0.612 0.764 0.765
Gemini 1.0 Pro 0.646 0.634 0.637 0.699 0.657 0.598 0.582 0.674 0.683
Claude 3 Opus 0.628 0.626 0.613 0.635 0.629 0.580 0.574 0.679 0.687

QWen-VL-Max 0.643 0.647 0.645 0.669 0.627 0.565 0.595 0.696 0.701
Base: Llama-3-Ins-8B
Mini-Gemini-HD-8B 0.482 0.423 0.571 0.4870.643 0.246 0.395 0.498 0.593

LLaVA-NeXT-8B 0.576 0.591 0.593 0.617 0.607 0.547 0.533 0.572 0.551
Cambrian-1-8B 0.547 0.694 0.661 0.662 0.579 0.439 0.344 0.512 0.487

MODA-8B 0.588 0.702 0.705 0.628 0.619 0.559 0.548 0.585 0.563
Emotion-Specialized

M2CL - 0.755 0.742 0.732 0.705 0.688 0.687 - -
MULSER - 0.757 0.755 0.739 0.738 0.775 0.775 - -
CMGCN - 0.733 0.720 0.697 0.683 - - 0.875 0.841
SPFVTE - 0.806 0.801 0.799 0.788 - - 0.883 0.879

MODA-8B 0.841 0.810 0.803 0.802 0.790 0.778 0.778 0.885 0.881

Table 4.Comparison of MODA with other leading MLLMs
as well as emotion task-specialized methods on four emotion
benchmarks.The reported numbers of emotion-specialized meth-
ods come from their of�cial manuscripts. The missed average per-
formance of emotion-specialized methods due to missed datasets.

sign experiments that compare the joint use of these compo-
nents against their individual use, as well as against baseline
models without either component. Tasks such as question
answering and multimodal summarization are chosen to
simultaneously evaluate alignment and distribution.

4.4. Results

As shown in Table 2, Table 3, and Table 4, we demonstrate
the main results on 21 popular benchmarks for multimodal
perception, cognition, and emotion tasks, respectively.

(a) Multimodal Attention (b) MODA

Figure 4.Analysis of multimodal attention and MODA. (a) Multi-
modal attention: average difference between self and cross-modal
attention is 56.97% for text and 62.44% for visual. (b) MODA:
average difference is 50.31% for text and 41.01% for visual.

� Perception Benchmark. To assess the effectiveness of
our proposed model, we compare it against state-of-the-art
Multimodal Large Language Models (MLLMs), including
the Mini-Gemini-HD series, the LLaVA-NeXT series, and
the Cambrian-1 series. We conduct a comparison under two
settings, where we tune these MLLMs from 8B and 34B
scale large foundation models. Our proposed MODA out-
performs other models of similar scale, including LLaVA-
NeXT and Cambrian, achieving an average improvement
of 1.0 for the base Llama-3-Ins-8B model and 0.9 for the
base Hermes2-Yi-34B model. In vision-centric and OCR
tasks, which require �ne-grained understanding, MODA
consistently performs better, achieving a metric of 66.0 for
the vision-centric average and 74.7 for OCR & Chart tasks.
This highlights the model's ability in tasks demanding �ne-
grained perception, further reinforcing its superiority.

� Cognition-speci�c & Emotion-speci�c Benchmark.
We evaluate a diverse set of MLLMs on both cognition-
centric and emotion-centric benchmarks, designed to as-
sess key dimensions of cognitive and emotional understand-
ing across various aspects. On the cognition benchmark,
MODA outperforms open-ended models of Cambrian-1
(0.981) and LLaVA-NeXT (0.979), achieving an average
score of 0.996, and performs comparably to close-ended
SOTA models like Claude 3 Opus (0.995). With cognition
task-speci�c tuning, MODA achieves better performance,
particularly excelling in �uency (0.999) and personality
consistency (0.998). On emotion benchmarks, MODA out-
performs open-ended models like Cambrian-1 (0.628) and
LLaVA-NeXT (0.624), with an average score of 0.657, and
achieves comparable performance to task-specialized SOTA
models like SPFVTE (0.738) and MULSER (0.739). No-
tably, MODA excels in TumEmo (0.747) and HFM (0.753)
benchmarks, demonstrating strong performance in emotion
recognition tasks due to its ability to capture �ne-grained
emotional features and �ne-grained details.
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(a) Fine-grained Perception

(b) Cognitive Conversation Analysis

(c) Emotion Understanding

Figure 5.Visualization results of state-of-the-art (SOTA) Multimodal Large Language Models (MLLMs) and our proposed MODA on
�ne-grained multimodal tasks, including perception, cognition, and emotion understanding.

� Analysis of Attention. We analyze the attention distribu-
tion to evaluate the effectiveness of the proposed MODA in
terms of attention distribution (Fig. 4). We conduct exper-
iments on �ne-grained understanding tasks,i.e., emotion
recognition based on visual-textual affective cues. Base-
line attention exhibits imbalanced scores, particularly in
deeper layers, highlighting its tendency to over-focus on
dominant modalities while neglecting others (i.e., visual af-
fective cues). Our MODAachieves consistently high across
all layers, preventing degradation and ensuring balanced
contributions from all tokens and modalities. This improve-
ment directly correlates with superior performance on multi-
modal tasks, particularly those requiring �ne-grained under-
standing, such as TumEmo and OCRBench, demonstrating
MODA's ability to avoid attention collapse and capture mul-
timodal interactions effectively.

� Visualization To highlight the advantages of Modular
Duplex Attention (MODA), we design a visualization exper-
iment focusing on output answers, showcasing its capacity
to generate �ne-grained and accurate responses. The output
answers (Figure 5) further demonstrate MODA's superior
capacity for �ne-grained understanding. By accurately cap-
turing the humorous twist on the classic poem, MODA
has demonstrated its unparalleled ability to reason about
�ne-grained multimodal details. These results underscore
MODA's transformative potential in advancing the state-of-
the-art in multimodal understanding, where it seamlessly
integrates information across modalities to achieve excep-
tional precision in complex cognitive and emotional tasks.

(a) UnderstandingGodfather

(b) Planning forGodfather
Figure 6.MODA-enabled apps inThe Godfather. (a) With a deep
and �ne-grained understanding of conversation, MODA captures
both the emotional and cognitive states of the character. (b)
MODA further simulates theGodfather's strategic thinking, plan-
ning the next steps while considering the character's traits.
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