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Abstract

Video prediction is a challenging task due to its na-
ture of uncertainty, especially for forecasting a long pe-
riod. To model the temporal dynamics, advanced meth-
ods benefit from the recent success of diffusion models, and
repeatedly refine the predicted future frames with 3D spa-
tiotemporal U-Net. However, there exists a gap between the
present and future and the repeated usage of U-Net brings
a heavy computation burden. To address this, we propose a
diffusion-based video prediction method that predicts future
frames by extrapolating the present distribution of features,
namely ExtDM. Specifically, our method consists of three
components: (i) a motion autoencoder conducts a bijec-
tion transformation between video frames and motion cues;
(ii) a layered distribution adaptor module extrapolates the
present features in the guidance of Gaussian distribution;
(iii) a 3D U-Net architecture specialized for jointly fusing
guidance and features among the temporal dimension by
spatiotemporal-window attention. Extensive experiments
on five popular benchmarks covering short- and long-term
video prediction verify the effectiveness of ExtDM.

1. Introduction
Video prediction is a long-standing and challenging task

in computer vision. It aims to forecast future frames of a
video like humans and serves as a key component of intel-
ligent decision-making systems [48]. Predicting the possi-
ble future with pixel-level details can benefit trustable de-
cisions, which is especially crucial for scenarios involv-
ing human security. Take an instance, considering an au-
tomatic vehicle driving at a crowded intersection, an im-
portant problem is to predict how people will move. There-
fore, various downstream applications have been developed,
ranging from autonomous driving [1, 7, 83], robotic naviga-
tion [16,33,84], artistic design [19,42,56,57,71], and video
understanding [80, 81, 85, 86].
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Figure 1. A comparison of quality and speed of SOTA diffusion
models for short-term and long-term video prediction on SMM-
NIST and KTH, respectively. We report FVD as well as FPS. Note
that the FPS axis is in the log scale.

Advanced works in video prediction [20, 22, 64, 66] pro-
pose to capture the dynamic change in the video [2, 18, 36,
60]. Direct methods [5, 27] (Fig. 2 (a)) only take RGB
frames as input and find that the video prediction problem
is difficult to be solved due to its inherent high complex-
ity (i.e., estimating the posterior probability of p(xp|xc)).
Thus, in-context learning methods [55, 61] (Fig. 2 (b)) in-
corporates semantic cues as key information, where motion
cues requiring no extra model can be easily introduced as
implicit guidance p(xp|xc,mc). A common characteristic
of these methods is that they have excellent predictive ca-
pacity in a short time span but lack accuracy over a longer
period, leading to counterfactual results like videos that fade
to grey. The reason behind this is that these methods take
no deterministic cues for the future, which has a huge gap.

Capturing future cues is challenging due to the uncer-
tainty of the future. It is required to understand high-level
spatiotemporal correlation and model potential proposals
for future [21]. Several recent attempts [14,24,62] embrace
the popular video diffusion models [26, 50] and try to re-
formulate estimating the future distribution as a serial de-
noising process. Attributed to its ODE formula, the future
frames can be obtained through a series of chained Marko-
vian steps. However, this incurs a significant computational
burden due to the repeated usage of spatiotemporal U-Net.
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Figure 2. Comparison between ExtDM and other video predic-
tion methods. The graphical model shows the prediction process
with motion cues. xc,xp indicate the condition frames and the
predicted ones, respectively. mc, m̂p represent the motion cues
from the condition frames and the ones predicted by our distribu-
tion extrapolation diffusion model ζ, respectively. m̂

{t−1,t}
p are

the intermediate results during extrapolating motion cues.

As a result, the processing speed becomes sluggish, in terms
of single-digit frames per second (FPS), as shown in Fig. 1.

In this work, we provide a novel view that casts the video
prediction problem as extrapolating the deterministic mo-
tion cues from present to future (i.e., m̂p = ζ(xc,mc), as
shown in Fig. 2 (c)). Our insight is that incorporating fu-
ture cues to generate corresponding frames is much easier
than hallucinating them from scratch. By gradually estimat-
ing the shifted distribution from the present one, ExtDM
can maintain temporal consistency and avoid drastic per-
formance drops for long-term video prediction. As a by-
product of decoupling motion extrapolation and frame pre-
diction, ExtDM can not only produce desired outcomes, but
also enable us to customize future motion and generate po-
tential proposals for stochastic events. Besides, the com-
pacted resolution of motion cues cut down the computation
cost raised by the prediction model.

To extrapolate future motion cues, we first extract motion
cues from condition frames with a lightweight motion au-
toencoder. Then, we propose a probability diffusion model
that extrapolates the motion cues via a series of Markovin
steps. We make use of the present features to estimate the
parameter of the video distribution. To account for tem-
poral dynamics, we develop a layered distribution adapter
that predicts the corresponding parameters over time. This
allows us to easily generate future features based on the es-
timated distribution. With the extrapolated features, we em-
ploy a sparse spatiotemporal window U-Net to fuse it with
plain features to refine the predicted future cues. The pre-
dicted future cues are ultimately used for reconstructing the
video frames as the extrapolated ones.

Our contributions are three-fold: (1) We propose a dis-
tribution extrapolation diffusion model that forecasts the fu-
ture frames by extrapolating from the present frames. (2)
We propose an efficient video prediction method that in-
cludes compression and reconstruction. By imitating future
motion cues, our approach can create tailored proposals for
stochastic events. (3) Extensive experiments on five popular
benchmarks verify the effectiveness of our method for both
short- and long-term video prediction.

2. Related Work

Video Prediction forecasts the future frames at the pixel
level [4, 9, 10, 23, 70, 75, 79] and models the change among
frames [14, 34, 44, 52, 58, 65, 76]. It is crucial for down-
stream applications such as representation [11, 31, 63, 69],
detection [37–39], segmentation [12,29,30,88], and restora-
tion [43,91–93]. In earlier work, [15,36] propose stochastic
variational inference-based methods that explicitly extract
spatial and temporal information. PRNN [66] constructs
spatiotemporal LSTM, SLAMP [3] learns the prior distribu-
tion from the appearance and optical flow, and MOSO [55]
decouples the frames to motion, scene and object tensors.
Video Diffusion Models learn to transform the Gaussian
noise distribution to a video-related distribution [8, 41, 47,
74, 78]. This process depends on multi-round condition-
guided denoise iteration. VDM [26] firstly proves the feasi-
bility for DM to complete video tasks. RVD [73] proposes a
DM that predicts the residual error of the next video frame
every time. MCVD [62] implements a general multiple-
inputs-multiple-output VDM based on 2D convolution by
compressing dimension. RaMViD [28] introduces random
masks and constructs a 3D convolution VDM. LVDM [25]
uses a 3D autoencoder and hierarchical mechanism to gen-
erate any length of the video in latent space.

Step into deep era [35, 68, 87, 89, 90], various methods
have made efforts to predict the future as mentioned above,
modeling long-range temporal dynamics still remains chal-
lenging due to the inherent shortcomings of each solution.
Direct methods bring high computation costs and, thus are
hard to deploy in low-resource devices. In-context learn-
ing methods rely on the semantic cues inferred from current
frames, which have a gap towards the ones in the future.

3. Methodology

The pipeline of the proposed ExtDM is illustrated in
Fig. 3. Given a series of condition frames xc, the objective
of ExtDM is to forecast the future frames xp in the video
by fully exploiting the appearance and motion cues. Let the
lengths of xc,xp be u, v, respectively. The workflow of our
method can be summarized into three parts: (i) The mo-
tion autoencoder compression (Sec. 3.1), (ii) Distribution
extrapolation diffusion model (Sec. 3.2) , and (iii) The mo-
tion autoencoder reconstruction (Sec. 3.1). The encoder of
motion autoencoder projects the condition frames xc into a
series of motion cues mc (i.e., optical flows and occlusion
maps). Then, layered distribution adaptor extrapolates the
features into the future via a stack of the Gaussian proces-
sions. SpatioTemporal-Window (STW) U-Net takes future
features as reference through attention, resulting in gener-
ation of future motion cues m̂p. Finally, the decoder of
motion autoencoder reconstructs the future frames xp from
the predicted motion cues m̂p and the condition frames xc.
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Figure 3. Pipeline of ExtDM. ExtDM consists of three main components: Motion autoencoder constructs a bijection transform between
the pixel space and motion space via compression and reconstruction. The layered distribution adaptor extrapolates the features of future
frames as a shifted distribution derived from condition frames. Furthermore, the built STW U-Net takes the extrapolated feature as guidance
and conducts sparse and stride attention among spatiotemporal dimensions for encouraging feature interactions.

Now, to lay the groundwork for predicting future out-
comes, we begin by establishing a bijection transforma-
tion that includes two mapping functions: xc → mc and
m̂p → xp.

3.1. Motion Autoencoder

As discussed above, motion provides deterministic cues
for reasoning the future. To this end, we compress the
video by a lightweight motion autoencoder which conducts
a bijection transformation between motion cues and video
frames. Built on top of lightweight autoencoder architec-
ture [32], the motion autoencoder consists of two stages:
the encoder E extracts motion cues from frames, and the
decoder D reconstructs video frames from the motion cues.

• Motion Autoencoder Compression In order to extract
motion cues from a series of condition frames, encoder
E(·, ·) estimates the optical flow and occlusion map between
video frames in a pair-wise manner. For condition frames
xc =

{
xi ∈ RCHW | i = 1, . . . , u

}
with a length of u, we

extract the motion cues between each condition frame xi

and the last condition frame xu (i.e., the keyframe that will
be used for reconstruction). These paired frames are fed
into the encoder to estimate the motion correlation between
them, including the optical flow wi and its corresponding
occlusion map oi as

mc =
{
mi ∈ R3hw | mi = E(xi,xu) =

[
wi

oi

]}
. (1)

Notably, the motion cues of the keyframes are replaced with
a learnable token. To represent the pixel offsets, we com-
pute the flow wi from the condition frame to the keyframe,
resulting in a size of 2 × h × w to describe vertical and
horizontal movements. To model challenging cases such as
occluded backgrounds, we estimate the occlusion map oi
which indicates the degree of occlusion on a scale from 0 to

1 and has a size of 1× h× w. Here, h = H/S,w = W/S,
and S is the downsampling factor.

• Motion Autoencoder Reconstruction With the extrap-
olated motion cues for the future m̂p = {m̂j ∈ R3hw|j =
1, . . . , v} and the keyframe, the decoder D(·, ·) reconstructs
the future frames in a pair-wise manner, similar to the en-
coder. We pair the keyframe and the predicted motion cue
of the jth future frame. The latent representation of con-
dition frames zu is first warped with the guidance of flow
wj . Considering the occlusion, the warped representation is
further filtered by incorporating the occlusion map of each
predicted future frame oj as oj ⊙ W(zu, wj). The repre-
sentation is further fed into network G for inpainting the
occluded area. Here, W(z, w) is the warp operation for fea-
ture z guided by flow w, and ⊙ is the element-wise product.
The reconstructed frames are finally obtained as

xp={xj ∈R3HW |xj=D(m̂j ,xu)=G(oj ⊙W(zu, wj))}.
(2)

Considering the problem at hand, we proceed to the
subsequent stage of extrapolating the future motion cues
through the estimation of distribution shift mc,xc → m̂p.

3.2. Distribution Extrapolation Diffusion Model

Advanced methods exploit the correlation alongside the
temporal dimension implicitly by temporal attention or 1D
temporal convolutional network to generate future frames.
While these approaches are effective in generating the fea-
ture of future frames, they encode the previous frame into
the network to predict the future one, which overlooks the
distribution prior among frames and generates counterfac-
tual samples due to uncertainty of the future. In contrast, we
propose a distribution extrapolation diffusion model to ex-
trapolate the motion cues m̂p through a series of backward
(denoising) steps. Based on the assumption of Gaussian
mixture model, we design a layered distribution adaptor
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Figure 4. Illustration of the detailed structure of (a) single layer
adaptor and (b) spatiotemporal window block. For more details
please refer to Alg. 1.

to model the shifted distribution of future features causally
and further introduce spatiotemporal attention to fuse the
extrapolated feature and the plain feature.

With the extracted motion cues mc and appearance
feature from latent representation zc, our video diffusion
model consists of a forward function {qt}t∈[0,1] to add a se-
ries of noise into the future frames m1

p ∼ q1(m
1
p) , and a

backward function {pt}t∈[0,1] to predict the future frames
from the Gaussian noise p1(m

0
p) := N (0, I) by the pro-

posed Spatiotemporal Window U-Net ϵθ(mt
p, c). We take

both the appearance feature (latent representation zc) and
the motion feature (motion cues mc) as guidance c. To
bridge the difference between present and future, we extrap-
olate the guidance from condition frames fc into the future
one fp by the proposed Layered Distribution Adaptor.

• Layered Distribution Adaptor Due to the challenge of
forecasting the future, there is a huge gap between future
and present. To overcome this challenge, we represent the
video frames as the same distribution. This enables us to an-
ticipate future samples using an autoregressive adapter. We
propose a layered distribution adaptor (LDA) that initially
‘encode’ the condition frames to estimate the distribution
parameter and ‘inference’ the future frame using distribu-
tion sampling for prediction. Unlike existing temporal cor-
relation methods that estimate the future frame implicitly,
LDA introduces the distribution prior as a constraint. To
better fit the needs of extrapolation, the types of input fea-
tures of LDA include latent representation zc, motion cues
mc, and so on. The pseudocode of LDA is in Alg. 1, and
the details are given in the next paragraph.

Given the features from condition frames with a length of
∆, LDA aims to produce an extrapolated feature of future
frames. The input features fc are first fed into projector
ϕe to exploit temporal correlation among condition frames,
and then are extrapolated into the future in a multi-layered
manner. For the lth layer, we predict future frames f̂∆:2l∆

from the present ones f1:∆ via a single-layer adaptor A(l):

Algorithm 1 LDA: Pytorch-style Pseudocode

# f: input feature (N C T H W)
# phi_e: encoding layer
# phi_d: decoding layers
# L: number of layers

f = phi_e(f) # encoding condition frames
for l in range(L):

r = f
mu, var = est(f) # Gaussian prior
f_h = (f - mu) / std
mu = m_est(f_h) + mu
var = (1 + v_est(f_h)) * var
f_h = phi_d[l](f_h) # inferencing future frames
f = f_h * var + mu
f = torch.cat([r,f], dim=2)

# distribution estimation
def est(f, eps=1e-5):

f_var = f.view(N, C, T, -1).var(dim=3) + eps
f_std = f_var.sqrt().view(N, C, T)
f_mean = f.view(N, C, T, -1).mean(dim=3)
return f_mean, f_std

f1:∆ = ϕe(fc),

f̂1:2l∆ = (f1:2l−1∆,A(l)(f1:2l−1∆)),

fp = (f̂1:∆, . . . , f̂2L−1∆:2L∆).

(3)

In each layer, the features from the present fa (e.g., f1:∆)
are used to approximate the target distribution of the video
p(vid). Following [72, 94], in LDA we set the prior distri-
bution of the video as a Gaussian distribution and yield a
closed solution of approximation as p(vid) ∼ N (µ(fa) +
µ′, σ(fa) + σ′), where µ, σ indicate the mean and varia-
tion, and µ′, σ′ represent the extrapolated ones, respectively.
With this simplification, the adaptor can be implemented by
a few lines of code: see est in Alg. 1. Further, the features
from the future fb can be sampled from the estimated distri-
bution conditioned on the feature from inference layer ϕd.
As shown in Fig. 4 (a), the future feature can be yielded as

fb=A(fa)=(σ(fa) + σ′)ϕd(
fa − µ(fa)

σ(fa)
) + µ(fa) + µ′. (4)

Note that fb has the same length as fa.

• Spatiotemporal Window U-Net Following [26], we in-
troduce a 3D U-Net ϵθ(mt

p, c) parameterized by θ as de-
noiser. Our spatiotemporal window (STW) U-Net con-
sists of various STW blocks and has the same upsample-
downsample architecture structure as usual. Guided by the
extrapolated features yield from LDA, STW U-Net takes
noised motion cues as input and refines it iteratively. How-
ever, it is challenging to efficiently conduct feature interac-
tion between guidance and noise features due to the expen-
sive nature of conventional 3D attention mechanisms. To
address this, we propose utilizing a spatiotemporal window
attention layer to effectively exploit the feature interactions
among them. In detail, we align and fuse the features using
a sparse cross-attention mechanism.

To reduce expenditures introduced by attention, STW
attention conducts sparse strided attention along with spa-



Table 1. Ablation Study on KTH (u = 10, v = 40). The lines with blue shallow indicate the optimal setting for our method. If
not otherwise specified, this setting is used for all subsequent experiments. CS = Compressed Space. STW = Spatiotemporal-Window
Attention. LDA = Layered Distribution Adaptor. OOM = Out-of-Memory.

(a) Module Ablation

CS STW LDA SSIM↑ PSNR↑ LPIPS↓ FVD↓
0.632 23.43 0.182 422.0

✓ 0.749 25.39 0.116 307.9
✓ ✓ 0.778 26.65 0.109 246.2
✓ ✓ 0.771 27.12 0.103 243.8
✓ ✓ ✓ 0.799 27.91 0.093 221.4

(b) Reconstruction of Autoencoder (v = 10)

Dataset SSIM↑ PSNR↑ LPIPS↓ FVD↓ FPS↑
BAIR 0.951 28.90 0.014 46.1 183.2
Cityscapes 0.858 27.80 0.048 67.0 146.0
KTH 0.911 33.73 0.027 119.7 182.6
SMMNIST 0.986 32.09 0.008 4.8 182.8
UCF 0.890 28.73 0.030 169.9 163.0

(c) Operation in LDA

Variants PSNR↑ FVD↓
Concat 27.22 249.5
AdaIN 26.45 289.4
AdaIN-z 26.83 263.1
Ours 27.91 221.4

(d) Window Size

Size PSNR↑ FVD↓
2 26.98 253.6
4 27.91 221.4
6 27.24 269.1
8 OOM OOM

(e) Attention in STW

Type PSNR↑ FVD↓
- 27.12 243.8

S-att 27.34 243.7
T-att 27.51 238.9
Ours 27.91 221.4

(f) Space Type of CS (PSNR↑)

Compressed Space KTH BAIR City. SMM.

Pixel [62] 26.40 17.70 21.90 17.07
Latent [25] 23.43 13.98 14.58 13.38
Flow & occ. map 27.95 18.83 24.34 18.85
Flow & occ. map (GT) 32.11 26.64 23.05 32.14

Table 2. Architecture Configurations of ExtDM from BAIR.
Model ExtDM-K1 ExtDM-K2 ExtDM-K3 ExtDM-K4

# LDA layer 1 2 3 4
# Rate (Pred./Cond.) 1 2 4 8
# Base channels 256 256 256 256
# Channel multiplier [1,2,4,8] [1,2,4,8] [1,2,4,8] [1,2,4,8]
# STW [t,h,w] [2,4,4] [2,4,4] [2,4,4] [2,4,4]
Frame resolution 32 32 32 32

tiotemporal dimension in each window, which is shown in
Fig. 4 (b). For the guidance fg from LDA and the feature
to be refined fx, we first split the spatiotemporal features
into partitions with a window size of kw and shift the parti-
tion window before the next STW attention similar to [40].
Then, we exploit the spatiotemporal coherence interaction
via jointly conducting strided and grid window T (·). As a
result, we estimate the cross-attention as

fx→g=softmax(
[T (fx)W

Q][T (fg)W
K]

⊤

√
d

)T (fx)W
V. (5)

Here, WQ,WK,WV are learnable matrix for linear pro-
jection, and d is set as the channel number of features.

Based on STW attention, we construct STW blocks used
in our U-Net. With the extracted features from stacked
blocks, STW U-Net finally estimates the noises by two sep-
arated 3 × 3 convolution layers that take charge of the oc-
clusion map and flow, respectively. The noises are used for
predicting the motion cues m̂p.

4. Experiment

Settings. Following [24, 62], we conduct experiments for
short-term and long-term video prediction on five datasets,
including KTH [51], BAIR [17], Cityscapes [13], SMM-
NIST [15, 54], and UCF-101 [53]. We train ExtDM by two
stages: (a) perceptual loss [32] for autoencoder and (b) L2
loss [8] for diffusion model. For each ExtDM, we provide
architecture configs corresponding to different numbers of
LDA as shown in Tab. 2.

GT Ours MCVDOurs (Flow)

02 07 12 17 22 27

10 12 14 16

KTH

SM-
MNIST

BAIR

10 11 12 13 14 15

City-
scapes

02 06 10 14

Figure 5. Qualitative comparison among SOTA methods. The
trajectory of each target is indicated by the green curve.

Metrics. Following [62,77], we employ PSNR, SSIM [67],
LPIPS [82] as well as FVD [59] to evaluate the quality of
generated videos. Besides, we also evaluate the efficiency
of methods, where we report the runtime speed of FPS.

4.1. Ablation Study

To investigate the effectiveness of motion autoen-
coder, layered distribution adaptor, and spatiotemporal-
window attention, we conduct component-wise ablation
study in Tab. 1(a). We further discuss each component
by conducting in-depth analyses of their variants to answer
the following research questions. RQ1: Which prediction
space performs better? RQ2: How to extrapolate features
into the future? RQ3: What size window is better in STW?
RQ4: What attention can fuse the extrapolated feature?
RQ1: The latent space has recently attracted the interest
of researchers since it amortizes the video as a compact
low-dimensional representation for cutting down the com-
putation cost. We conduct experiments on short- and long-
term video prediction datasets as shown in Tab. 1 (b)&(f).
As can be seen, our method exhibits excellent reconstruc-
tion quality, as evidenced by its high PSNR compared to



Table 3. Quantitative comparisons on KTH (64 × 64). We compare our method with ten SOTA methods under two settings. Bold and
underline indicate the highest and second-highest performance. K represents the number of layers in LDA, respectively.

Methods Year
u = 10, v = 30 u = 10, v = 40

FPS↑
SSIM↑ PSNR↑ LPIPS↓ FVD↓ SSIM↑ PSNR↑ LPIPS↓ FVD↓

U-ViT [6] CVPR23 0.642 26.13 0.155 694.7 0.606 25.40 0.179 772.0 4.08
DiT [49] ICCV23 0.657 24.29 0.124 750.4 0.641 23.56 0.145 712.8 2.22
RaMViD [28] TMLR24 0.590 23.42 0.169 581.3 0.567 22.96 0.187 571.6 0.12
LVDM [25] ArXiv23 0.644 23.83 0.167 481.1 0.632 23.43 0.182 422.0 1.77
RVD [73] ArXiv22 0.782 25.32 0.128 441.1 0.758 24.45 0.152 419.1 0.23
VIDM [45] AAAI23 0.694 25.02 0.150 357.1 0.661 24.32 0.172 376.0 0.89
LFDM [46] CVPR23 0.772 26.89 0.110 320.2 0.750 26.41 0.116 287.9 3.39
MCVD-c [62] NeurIPS22 0.812 27.45 0.108 299.8 0.793 26.20 0.124 276.6 6.35
MCVD-cpf [62] NeurIPS22 0.746 24.30 0.143 294.9 0.720 23.48 0.173 368.4 6.38
MCVD-s [62] NeurIPS22 0.835 27.50 0.092 323.0 0.744 26.40 0.115 331.6 2.29
ExtDM-K1 CVPR24 0.804 28.34 0.077 284.9 0.784 27.89 0.090 288.7 20.67
ExtDM-K2 CVPR24 0.801 28.43 0.076 239.8 0.779 27.73 0.089 244.1 24.76
ExtDM-K3 CVPR24 0.817 29.04 0.071 238.3 0.787 28.31 0.084 231.0 38.36
ExtDM-K4 CVPR24 0.838 28.53 0.082 227.9 0.799 27.91 0.093 221.4 45.28
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Figure 6. Qualitative comparison on KTH Action (left) and BAIR (right). The targets (human arms and the robot arm) are indicated by
red boxes. Corresponding PSNRs are illustrated below each video. For more results please refer to Tab. 3 and Tab. 4.

other prediction spaces. We believe that this improvement
is attributed to the temporal consistency captured by motion
cues, where ExtDM effectively integrates into the predic-
tion along with appearance information. Additionally, we
can further enhance the reconstruction quality by incorpo-
rating precise flows and occlusion maps from the ground
truth data (grey line).
RQ2: Bridging the gap between the future and present is
the key point for video prediction. We conduct experi-
ments to verify the effectiveness of our proposed LDA and
further discuss its variant in Tab. 1 (a)&(c). As can be
seen, our adaptor gains a 9.24% performance boost in ab-
lation and outperforms second-best operations with a mar-
gin of 6.89%. We speculate the improvement is because
a deterministic trajectory extrapolated by LDA can help the
model avoid uncertainty and generate confident predictions.
As shown in Fig. 5, our method can predict the following
videos with correct trajectories. In contrast, other methods
directly anticipate the video based on appearance yielding
blurry frames towards the end.
RQ3: As the size of the spatiotemporal window decreases,
it is more and more efficient to conduct feature interac-
tions between guidance and plain features. Thus, we ex-

plore studying the effect of the window size for our pro-
posed method, as shown in Tab. 1 (a)&(d). As a result, we
can conclude that our approach successfully strikes a bal-
ance between effectiveness and efficiency when the window
size is set to four. The reasons are double-sided. Firstly, a
proper window size allows us to control the computational
cost while still achieving comparable performance in filter-
ing out irrelevant features, particularly in cases of occlu-
sion. On the other hand, a larger window size can lead to
excessive computation and may not capture the relevant in-
formation optimally, resulting in subpar performance.
RQ4: Fusing the extrapolated feature can largely encourage
the feature interaction between present and future. We con-
duct experiments in Tab. 1 (a)&(e) to verify the effective-
ness of STW Attention. The conclusion we can draw is that
the feature fusing requires not only the temporal dimension
but also the spatial one for fully exploiting the guidance.

4.2. Comparison with SOTAs

As shown in Tab. 3, Tab. 4, Tab. 5, Tab. 6, and Tab. 7,
we demonstrate the main results on two short-term video
dataset (i.e., SMMNIST and UCF-101) and three long-term
video datasets (i.e., KTH, BAIR, and Cityscapes).



Table 4. Quantitative comparisons on BAIR (64× 64). We compare our method with twelve SOTA methods under two settings.

Methods Year
u = 2, v = 14 u = 2, v = 28

FPS↑
SSIM↑ PSNR↑ LPIPS↓ FVD↓ SSIM↑ PSNR↑ LPIPS↓ FVD↓

DiT [49] ICCV23 0.543 15.07 0.171 1013.6 0.520 14.65 0.186 2290.7 2.25
LVDM [25] ArXiv23 0.464 14.40 0.182 900.6 0.435 13.98 0.198 1663.8 1.31
U-ViT [6] CVPR23 0.740 17.32 0.078 200.2 0.696 16.53 0.094 263.5 3.84
LFDM [46] CVPR23 0.770 17.45 0.084 167.6 0.730 16.68 0.106 276.8 5.66
RVD [73] ArXiv22 0.792 17.88 0.072 139.7 0.750 16.76 0.093 267.1 0.23
RaMViD [28] TMLR24 0.758 17.55 0.085 166.5 0.691 16.51 0.109 238.7 0.41
VIDM [45] AAAI23 0.763 16.97 0.080 131.7 0.728 16.20 0.096 194.6 0.82
MCVD-c [62] NeurIPS22 0.834 19.10 0.078 90.5 0.785 17.60 0.100 120.6 4.15
MCVD-cp [62] NeurIPS22 0.838 19.10 0.075 87.8 0.797 17.70 0.078 119.0 4.15
MCVD-cpf [62] NeurIPS22 0.787 17.10 0.077 89.6 0.745 16.20 0.086 118.4 4.15
MCVD-s [62] NeurIPS22 0.836 19.10 0.078 94.1 0.779 17.50 0.108 132.1 2.51
MCVD-sp [62] NeurIPS22 0.837 19.20 0.076 90.5 0.789 17.70 0.097 127.9 2.51
ExtDM-K1 CVPR24 0.785 17.73 0.077 114.2 0.748 17.04 0.096 140.3 29.32
ExtDM-K2 CVPR24 0.827 19.76 0.078 97.1 0.790 18.53 0.073 125.8 35.31
ExtDM-K3 CVPR24 0.838 20.18 0.066 86.1 0.802 18.83 0.069 114.7 37.44
ExtDM-K4 CVPR24 0.845 20.04 0.053 81.6 0.814 18.74 0.069 102.8 47.01

Table 5. Quantitative comparisons on Cityscapes (128× 128).

Methods Year
u = 2, v = 28

FPS↑
SSIM↑ PSNR↑ LPIPS↓ FVD↓

U-ViT [6] CVPR23 0.362 10.84 0.431 1045.3 0.40
RaMViD [28] TMLR24 0.454 13.14 0.395 812.6 0.12
VIDM [45] AAAI23 0.539 18.49 0.252 724.7 0.54
RVD [73] ArXiv22 0.489 17.21 0.242 465.0 0.15
LFDM [46] CVPR23 0.579 20.32 0.157 194.9 2.93
MCVD-c [62] NeurIPS22 0.690 21.90 0.112 141.3 2.26
MCVD-s [62] NeurIPS22 0.720 22.50 0.121 184.8 0.89
ExtDM-K1 CVPR24 0.631 21.49 0.145 157.2 24.65
ExtDM-K2 CVPR24 0.683 21.72 0.135 152.8 28.60
ExtDM-K3 CVPR24 0.701 22.42 0.126 137.2 30.46
ExtDM-K4 CVPR24 0.745 22.84 0.108 121.3 35.44

Table 6. Quantitative comparisons on SMMNIST (64× 64).

Methods Year
u = 10, v = 10

FPS↑
SSIM↑ PSNR↑ LPIPS↓ FVD↓

U-ViT [6] CVPR23 0.510 17.44 0.138 251.5 4.08
RaMViD [28] TMLR24 0.585 18.30 0.123 100.4 0.12
LVDM [25] ArXiv23 0.624 13.38 0.198 49.85 1.77
VIDM [45] AAAI23 0.514 12.06 0.241 49.08 0.86
LFDM [46] CVPR23 0.710 15.68 0.137 21.32 3.41
MCVD-c [62] NeurIPS22 0.786 17.22 0.117 25.63 6.99
MCVD-cpf [62] NeurIPS22 0.753 16.33 0.139 20.77 6.92
MCVD-s [62] NeurIPS22 0.785 17.07 0.129 23.86 4.15
MCVD-sf [62] NeurIPS22 0.758 16.31 0.141 44.14 4.09
MCVD-spf [62] NeurIPS22 0.748 16.15 0.146 36.12 4.10
RVD [73] ArXiv22 0.764 18.56 0.123 17.84 0.23
ExtDM-K1 CVPR24 0.776 17.55 0.085 13.87 20.16
ExtDM-K4 CVPR24 0.813 19.59 0.068 11.11 24.54

Table 7. Quantitative comparisons on UCF-101 (64× 64).

Methods Year
u = 4, v = 12

FPS↑
SSIM↑ PSNR↑ LPIPS↓ FVD↓

RaMViD [28] TMLR24 0.639 21.37 0.090 396.7 0.33
LFDM [46] CVPR23 0.627 20.92 0.098 698.2 3.53
MCVD-cp [62] NeurIPS22 0.658 21.82 0.088 468.1 1.72
ExtDM-K2 CVPR24 0.754 23.89 0.056 394.1 39.80

Short-term Video Prediction. We can clearly see the ad-
vantage of our network over the alternative (RVD) with a
margin of 23.60%. Splitting the motion and appearance
of video into the flow autoencoder as well as the diffusion
model allows us to identify key motion and content features,
and yield predictions with high fidelity compared to others.
Therefore, our method avoids producing samples with fac-
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Figure 7. Frame-wise comparison on long-term video datasets.

tual errors, such as the time-varied digits.
Long-term Video Prediction. First, we can observe a
performance improvement of 10.23% among three bench-
marks on twenty metrics, which verifies the effectiveness
of ExtDM in comparison with second-best metrics from ad-
vanced SOTAs (e.g., MCVD, RVD). Second, under two pre-
diction settings on KTH and BAIR, we find the performance
degradation for predicting long video (in contrast to the
setting of predicting short video) is -9.12%, which is bet-
ter than -14.60% for the advanced SOTA method (MCVD).
Third, we notice that the utilization of LDA can largely in-
crease performance. Compared to the single-layered LDA
setting (K1), the multi-layered ones gain an average im-
provement of 4.73%, 19.41%, 18.17%, and 14.07% on
KTH, BAIR, Cityscapes, and SMMNIST, respectively. This
is because the temporal distribution is hard to estimate in a
time, where we decouple it into multiple steps can yield
better results. Besides, introducing multi-layer increases
the computation cost, leading to slower processing speed.
Thus, ExtDM offers scalable variants to meet the require-
ments in different scenarios, whether it be for precise per-
formance or high-speed execution.
Per-frame Comparison. To better exploit the temporal
consistency, we plot the averaged PSNR over testing videos,
alongside the index of video frames. As shown in Fig. 7,
we calculate the performance degradation between the first
frame and the last one. ExtDM shows low degradation for
long-term video prediction, giving us 29.60% better predic-
tions than MCVD (-7.87 v.s -10.20).
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Visualization Comparison. Fig. 6 and Fig. 8 show the
qualitative comparison between ExtDM and SOTA meth-
ods. We find that ExtDM can generate temporal consis-
tent results and avoids factual errors (e.g., incorrect motion,
gradual grey, corrupted human, digits, and background) in
existing SOTA methods. This again verifies our insight that
existing methods mostly focus on the cues from the present
due to overlooking the dynamic changes in the future.
Runtime Analysis. Experimental results on five datasets
verify the efficiency of our method, where ours runs 7.51
times faster. The improvement comes from avoiding the
heavy cost involved in computing high-resolution frames
and instead estimating low-resolution motion cues.

5. Discussion

ExtDM-based video generation framework can boost
various directions. Here, we envision two potential uses.
Stochastic Events. For a considerable time, predicting
stochastic events has been an aspirational objective in the
field, and with the aid of ExtDM, it is now feasible to take
an additional leap forward. If stochastic events follow the
physical disciplines such as changing directions and veloc-
ities when reaching the boundary [15], we can design some
rules to generate motion cues accordingly. Then, ExtDM
can naturally generate potential predictions according to the
principled motion cues, as shown in Fig. 9 (a).
Tailored Perdiction. In addition to generating tailored pre-
dictions, a man can customize a preferred trajectory ideally.
Based on ExtDM, we decouple the video prediction as mo-
tion cues extrapolation and video frame reconstruction, thus
making that modify the prediction results according to the
human-made motion cues. Fig. 9 (b) shows a customized
prediction by extracting motion cues from another video.

6. Conclusion

In this paper, we propose ExtDM, a diffusion-based
framework for video prediction by extrapolating the dis-
tribution along temporal dimensions. We reformulate the

Stochastic
Event #1

Stochastic
Event #2

(a) Stochastic Events

Origin
Video

Tailored
Prediction

Customized / manmade
Motion cues

(b) Tailored Predictions
Figure 9. Prediction results for (a) stochastic events on SMMNIST
and (b) tailored prediction on BAIR.

video prediction task as a problem of estimating the future
cues of the video, thus providing a solution that extrapolates
the distribution shift from present to future. The extrapola-
tion mainly focuses on i) modeling temporal dynamics in
both the short- and long-term future, and ii) constructing
video distribution along with temporal dimension in a pair-
wise manner. As a low-hanging fruit, the extrapolated cues
can be efficiently predicted due to their compacted resolu-
tion and be customized by humans to multiple potential pro-
posals of the future. Overall, ExtDM helps the video pre-
diction more effective and can be interpreted from the view-
point of intermediate future cues. Extensive experiments
on fivevideo prediction datasets show our model achieves a
new SOTA for both short- and long-term video prediction.
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Sylvain Lamprier, and Patrick Gallinari. Stochastic latent
residual video prediction. In ICML, 2020. 1

[19] Tsu-Jui Fu, Xin Eric Wang, Scott T. Grafton, Miguel P. Eck-
stein, and William Yang Wang. M3l: Language-based video
editing via multi-modal multi-level transformers. In CVPR,
2022. 1

[20] Antonino Furnari and Giovanni Maria Farinella. What would
you expect? anticipating egocentric actions with rolling-
unrolling lstms and modality attention. In ICCV, 2019. 1

[21] Naoya Fushishita, Antonio Tejero-de Pablos, Yusuke
Mukuta, and Tatsuya Harada. Long-term human video gen-
eration of multiple futures using poses. In ECCV, 2020. 1

[22] Zhangyang Gao, Cheng Tan, Lirong Wu, and Stan Z. Li.
Simvp: Simpler yet better video prediction. In CVPR, 2022.
1

[23] Vincent Le Guen and Nicolas Thome. Disentangling physi-
cal dynamics from unknown factors for unsupervised video
prediction. In CVPR, 2020. 2

[24] William Harvey, Saeid Naderiparizi, Vaden Masrani, Chris-
tian Weilbach, and Frank Wood. Flexible diffusion modeling
of long videos. In NeurIPS, 2022. 1, 5

[25] Yingqing He, Tianyu Yang, Yong Zhang, Ying Shan, and
Qifeng Chen. Latent video diffusion models for high-fidelity
video generation with arbitrary lengths. arXiv, 2023. 2, 5, 6,
7

[26] Jonathan Ho, Tim Salimans, Alexey A. Gritsenko, William
Chan, Mohammad Norouzi, and David J. Fleet. Video diffu-
sion models. In NeurIPS, 2022. 1, 2, 4

[27] Matthew D Hoffman, David M Blei, Chong Wang, and
John Paisley. Stochastic variational inference. JMLR,
14(40):1303–1347, 2013. 1
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Zhang, Huiwen Chang, Alexander G Hauptmann, Ming-
Hsuan Yang, Yuan Hao, Irfan Essa, et al. Magvit: Masked
generative video transformer. arXiv, 2022. 5

[78] Sihyun Yu, Kihyuk Sohn, Subin Kim, and Jinwoo Shin.
Video probabilistic diffusion models in projected latent
space. In CVPR, 2023. 2

[79] Wei Yu, Yichao Lu, Steve Easterbrook, and Sanja Fidler.
Efficient and information-preserving future frame prediction
and beyond. In ICLR, 2020. 2

[80] Yingjie Zhai, Guoli Jia, Yu-Kun Lai, Jing Zhang, Jufeng
Yang, and Dacheng Tao. Looking into gait for perceiving
emotions via bilateral posture and movement graph convolu-
tional networks. TAC, 2024. 1

[81] Pengyu Zhang, Dong Wang, and Huchuan Lu. Multi-
modal visual tracking: Review and experimental compari-
son. CVMJ, 10(2):193–214, 2024. 1

[82] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman,
and Oliver Wang. The unreasonable effectiveness of deep
features as a perceptual metric. In CVPR, 2018. 5

[83] Zhicheng Zhang, Song Chen, Zichuan Wang, and Jufeng
Yang. Planeseg: Building a plug-in for boosting planar re-
gion segmentation. TNNLS, 2024. 1

[84] Zhicheng Zhang, Shengzhe Liu, and Jufeng Yang. Multiple
planar object tracking. In ICCV, 2023. 1

[85] Zhicheng Zhang, Lijuan Wang, and Jufeng Yang. Weakly
supervised video emotion detection and prediction via cross-
modal temporal erasing network. In CVPR, 2023. 1

[86] Zhicheng Zhang and Jufeng Yang. Temporal sentiment lo-
calization: Listen and look in untrimmed videos. In ACM
MM, 2022. 1

[87] Zhicheng Zhang, Pancheng Zhao, Eunil Park, and Jufeng
Yang. Mart: Masked affective representation learning via
masked temporal distribution distillation. In CVPR, 2024. 2

[88] Pancheng Zhao, Peng Xu, Pengda Qin, Deng-Ping Fan,
Zhicheng Zhang, Guoli Jia, Bowen Zhou, and Jufeng Yang.
Lake-red: Camouflaged images generation by latent back-
ground knowledge retrieval-augmented diffusion. In CVPR,
2024. 2

[89] Sicheng Zhao, Guoli Jia, Jufeng Yang, Guiguang Ding, and
Kurt Keutzer. Emotion recognition from multiple modalities:
Fundamentals and methodologies. SPM, 38(6):59–73, 2021.
2

[90] Sicheng Zhao, Xingxu Yao, Jufeng Yang, Guoli Jia,
Guiguang Ding, Tat-Seng Chua, Björn W. Schuller, and Kurt
Keutzer. Affective image content analysis: Two decades
review and new perspectives. TPAMI, 44(10):6729–6751,
2022. 2

[91] Shihao Zhou, Duosheng Chen, Jinshan Pan, Jinglei Shi, and
Jufeng Yang. Adapt or perish: Adaptive sparse transformer
with attentive feature refinement for image restoration. In
CVPR, 2024. 2

[92] Shihao Zhou, Mengxi Jiang, Shanshan Cai, and Yunqi Lei.
Dc-gnet: Deep mesh relation capturing graph convolution
network for 3d human shape reconstruction. In ACM MM,
2021. 2

[93] Shihao Zhou, Mengxi Jiang, Qicong Wang, and Yunqi Lei.
Towards locality similarity preserving to 3d human pose es-
timation. In ACCV, 2020. 2

[94] Xiaosu Zhu, Jingkuan Song, Lianli Gao, Feng Zheng, and
Heng Tao Shen. Unified multivariate gaussian mixture for
efficient neural image compression. In CVPR, 2022. 4


