
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 1

PlaneSeg: Building a Plug-In for Boosting
Planar Region Segmentation

Zhicheng Zhang , Graduate Student Member, IEEE, Song Chen, Zichuan Wang,
and Jufeng Yang , Member, IEEE

Abstract— Existing methods in planar region segmentation
suffer the problems of vague boundaries and failure to detect
small-sized regions. To address these, this study presents an
end-to-end framework, named PlaneSeg, which can be easily
integrated into various plane segmentation models. Specifically,
PlaneSeg contains three modules, namely, the edge feature
extraction module, the multiscale module, and the resolution-
adaptation module. First, the edge feature extraction module
produces edge-aware feature maps for finer segmentation bound-
aries. The learned edge information acts as a constraint to
mitigate inaccurate boundaries. Second, the multiscale module
combines feature maps of different layers to harvest spatial
and semantic information from planar objects. The multiformity
of object information can help recognize small-sized objects
to produce more accurate segmentation results. Third, the
resolution-adaptation module fuses the feature maps produced
by the two aforementioned modules. For this module, a pair-
wise feature fusion is adopted to resample the dropped pix-
els and extract more detailed features. Extensive experiments
demonstrate that PlaneSeg outperforms other state-of-the-art
approaches on three downstream tasks, including plane segmen-
tation, 3-D plane reconstruction, and depth prediction. Code is
available at https://github.com/nku-zhichengzhang/PlaneSeg.

Index Terms— Deep learning, depth prediction, planar region
segmentation, plane reconstruction, plug-in.

I. INTRODUCTION

IN THIS article, we study the problem of planar region
segmentation, which is an essential subproblem of 3-D

plane reconstruction. Planar regions in a scene provide vital
information for many vision-based tasks, including augmented
reality [1], [2], [3], stereo vision [4], [5], [6], and simultaneous
localization and mapping (SLAM) [7], [8]. After extracting all
planes from a single image, people can then select the ones
of their interest and design useful and attractive applications
based on these planar regions. For example, one could dec-
orate plain walls with a favorite texture [9], or advertisers
might make the best use of less-informative regions [10]

Manuscript received 1 October 2022; revised 21 February 2023;
accepted 14 March 2023. This work was supported in part by the National
Key Research and Development Program of China Grant 2018AAA0100400,
in part by the Natural Science Foundation of Tianjin, China, under Grant
20JCJQJC00020, and in part by the Fundamental Research Funds for the
Central Universities. (Corresponding author: Jufeng Yang.)

Zhicheng Zhang, Song Chen, and Jufeng Yang are with the Tianjin Key
Laboratory of Visual Computing and Intelligent Perception (VCIP) and the
College of Computer Science, Nankai University, Tianjin 300350, China
(e-mail: gloryzzc6@sina.com; songcheney@mail.nankai.edu.cn; yangjufeng@
nankai.edu.cn).

Zichuan Wang is with the School of Mathematical Sciences, Nankai Uni-
versity, Tianjin 300071, China (e-mail: zichuan.wang@mail.nankai.edu.cn).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TNNLS.2023.3262544.

Digital Object Identifier 10.1109/TNNLS.2023.3262544

(e.g., desks, walls, and boards) in a promotional video to
market their products more efficiently. Moreover, planar fea-
tures are also crucial cues for autonomous robots to perceive
surroundings and build a map through camera views [11].

Plane segmentation has been extensively explored with the
aid of additional 3-D structure information. In some cases,
the structure information of an image is explicitly provided,
(e.g., point cloud [14], [15] or depthmap [16], [17], [18]),
which contains essential information of a 3-D space that can
be directly used to fit a plane. However, accurately segmenting
planar instances from a single image still remains a challenge.
Many traditional works adopt bottom-up approaches [19], [20],
which first detect structure priors, such as vanishing points,
intersections, lines, and image patches, in man-made scenes.
Later, the geometric relationships of these primitives are
explored. These approaches describe man-made environments
with low-level features, but handcrafted priors are not robust
when encountering images with low resolution and minor
spatial malposition.

Recently, PlaneNet [9] and PlaneRecover [21] propose
straightforward CNN-based architectures to detect planar
regions. Both regard this task as a pixelwise segmentation
problem. However, the maximum of detected planes is limited.
Specifically, given a value K that represents the maximum
plane number in an image, PlaneNet produces a K × 3 plane
parameters vector by a regression branch. Consequently, this
method can only produce no more than K plane detection
results. Similarly, in PlaneRecover, there is also a conv layer
with a kernel size of 3m, which limits the maximum detection
number to m. Recently, PlaneEmbedding [22] and PlaneR-
CNN [13] was designed to address this issue. PlaneEmbed-
ding applies a two-stage bottom-up strategy with the mean
shift clustering algorithm, while PlaneRCNN leverages mask
R-CNN [23] to generate an arbitrary number of planes.
In PlaneRCNN, a refinement module is proposed to refine
plane masks by integrating features of all masks extracted by
mask R-CNN.

However, it is an ill-posed problem to segment planes from
a single image [13]. With the class-agnostic setting, the plane
generally includes a large set of classes and varying-sized
objects for the cupboard, lavatory cover, and even piece of
rubbish bin. Thus, there are two challenges that still remain,
as illustrated in Fig. 1. First, the predicted segmentation mask
is inaccurate, especially for the area around the plane. Unlike
the clear boundary of a generic object, the plane boundary area
is vague due to the high-level abstract of structure information
like depth and normal information [13], [22]. As a result,
the abstract raises the degree of challenge which requires
the introduction of knowledge for a promising performance.
Second, the small-sized planes are erroneously detected

2162-237X © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on April 09,2023 at 07:16:03 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-4241-0588
https://orcid.org/0000-0003-0219-3443

2 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Fig. 1. Illustration of the two challenges for planar region segmentation.
We show four examples selected from the ScanNet [12] dataset. The vague
boundaries challenge (the first two rows) arises from insufficiency to capture
edge-aware features, while the small-sized regions challenge (the last two
rows) comes from the loss of multiscale information. P.R. and GT denote
PlaneRCNN [13] and the ground truth, respectively.

(see Fig. 1). In planar region segmentation, planes are built in
a piecewise manner to represent surfaces in the real world [9].
However, existing methods focusing on high-level features
largely throw away the spatial information of small-sized
objects, which is easily overlooked. Therefore, prevenient
works neglect the aforementioned challenges [9], [21], [22]
or only take into account one [13].

Considering these challenges, this study proposes PlaneSeg,
which is a CNN-based network that consists of three corre-
sponding modules, namely, the edge feature extraction module,
the multiscale module, and the resolution-adaptation module.
Since the proposed PlaneSeg takes in the rich information
mentioned above, when it is integrated into existing state-
of-the-art PlaneRCNN, PlaneEmbedding, and PlaneRecNet,
PlaneSeg improves its performance both qualitatively and
quantitatively. Following tradition, the proposed PlaneSeg has
trained end-to-end on the recent ScanNet [12] dataset from
which the study uniformly selected 32 000 frames as training
data. Similar to [24], the edge module training signal was
generated from the ground truth of plane masks. These edge
features were fused with multiscale context information in a
pairwise style and restored dropped pixels to produce better
features with which the original plane segmentation models
can perform better.

On the whole, our contributions are summarized as follows.
1) We design PlaneSeg that leverages edge and multiscale

information to conduct plane segmentation in a simple,
efficient manner. We propose a pairwise fusion strategy
to integrate the edge information and multiscale context
information, as well as recover the feature map of
small planes. With the help of the PlaneSeg, more
accurate segmentation results with finer boundaries can
be produced.

2) We develop a plug-in component, namely, PlaneSeg,
which can be flexibly integrated into various plane seg-
mentation models and brings a significant performance
boost to existing state-of-the-art methods. Extensive
experiments on two benchmark datasets demonstrate the
superiority of the proposed method.

II. RELATED WORKS

A. Instance Segmentation

Instance segmentation [25], [26], [27], [28] contains two
types, i.e., bottom-up methods and top-down ones. Bottom-up
approaches predict the instance label of each pixel through
clustering. For example, PersonLab [29] first recognizes indi-
vidual keypoints and then groups these into pose instances.
Li et al. [30] takes salient information into consideration and
further constructs the segmentation model. Unlike the bottom-
up paradigm, top-down approaches first predict bounding
box proposals based on detection models and then refine
the bounding boxes to obtain segmentation results. Mask R-
CNN [23] adds a network branch for predicting instance
mask, built on top of faster R-CNN [31] for object detection.
This backbone has been widely combined in state-of-the-art
instance segmentation pipelines [32]. Zhang et al. [33] pro-
posed a MaskSSD that successfully extended single shot multi-
box detector (SSD) [34] to an instance segmentation method.
Therefore, this study presents PlaneSeg which consists of three
modules and can assist plane segmentation models from both
categories in dealing with the ambiguity of boundaries.

B. Planar Region Analysis
The analysis of planar regions has been widely studied

due to the various geometric cues provided for downstream
tasks, such as scene understanding and scene reconstruction.
With the help of analyzing plane regions, it is possible to
develop applications in 3-D reconstruction [35], [36], [37],
[38], [39], [40] and depth estimation [41], [42]. In the static
image, for image segmentation, the prior information provided
by planes can help segment common objects [43], [44].
For example, Zhang et al. [43] extracted view-independent
3-D features (e.g., planarity of surface), which are useful for
splitting planar and nonplanar objects. The features are then
used to segment and recognize different objects in the image.
For plane segmentation, much effort has been placed into
designing effective deep neural network architectures [13],
[22], analyzing the theory of networks [45], [46], boosting
mountains of downstream applications in geometric under-
standing [47], [48], and indoor layout estimation [49], [50].
In the dynamic video, for manipulating planes [51], [52], [53],
tracking manipulation tasks (TMT) [52] builds a hardware sys-
tem consisting of a robot arm and planar objects that guide the
manipulator in moving planar objects into the desired position.
Furthermore, Li et al. [51] proposed a novel adaptive neural
network for developing multiple planar manipulators, where an
admittance model is developed to generate reference which is
then used in manipulators. For tracking planes [54], [55], [56],
Valeiras et al. [54] proposed tracking objects based on their
projection onto the focal plane and then leveraging a virtual
mechanical system to introduce high temporal elasticity for
adaptation on the change of plane. Recently, Gracker [56]
introduces a graph-matching algorithm into tracking, that is,
building the graph between the initial planar region and the
searched image. Then, the planar regions are associated across
frames by computing the similarity between nodes of planes.

C. Plane Segmentation From a Single Image
Plane segmentation has been a long-standing problem that is

difficult to solve [57], [58], [59]. Previously, Hoiem et al. [58]

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on April 09,2023 at 07:16:03 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: PlaneSeg: BUILDING A PLUG-IN FOR BOOSTING PLANAR REGION SEGMENTATION 3

and Saxena et al. [59] explored this problem with different
approaches. The former first divides the image into superpixels
and then employs a boosted decision tree algorithm to classify
these into different planes. Meanwhile, the latter predicts
per-pixel depth and then produces a 3-D model of a given
image. However, the methods mentioned earlier can only
detect coarse planes, such as building exteriors or streets, and
mask boundaries are unable to properly coincide with the
actual boundaries. As such, accurate detection of small and
complex object surfaces remains unsolved.

In recent years, many works have proved that it is possible
to reconstruct both depth [60], [61] and normal [62], [63]
information accurately from a single RGB image. These works
provide sufficient information to recover the 3-D structure of a
given image and generate accurate plane detection results [49],
[64], [65], [66], [67]. PlaneNet [9], PlaneRecover [21], Plan-
eRCNN [13], PlaneEmbedding [22], and PlaneRecNet [66]
have further proved the validity of CNN-based methods to
segment and reconstruct more detailed plane instances. These
models combine the segmented planes and predicted plane
parameters for reconstructing the 3-D version of planes to con-
tain a depth prediction module as an auxiliary. PlaneNet and
PlaneRecover propose an end-to-end architecture. However,
both suffer the drawback wherein the output is limited to a
fixed number of planes at 10 and 5, respectively. Most recently,
PlaneRCNN, PlaneRecNet, and PlaneEmbedding successfully
solved this problem with the ability to segment an arbitrary
number of plane instances. Specifically, PlaneRCNN employs
mask R-CNN, which includes a region proposal network and
can be applied to instance segmentation tasks. PlaneRCNN
also improves segmentation quality through a refinement net-
work and enhances segmentation consistency with a warping
loss. To further exploit the power of the instance segmentation
network, PlaneRecNet employs SOLOv2 [68] which reformu-
lates the parallel generation of instances as mask prediction
and feature learning. Moreover, PlaneRecNet further corrects
the error of predicted masks by geometric constraint, and thus,
avoids generating masks at the edge area. Meanwhile, Pla-
neEmbedding proposes a two-stage strategy with associative
embedding, which first assigns pixels that belong to the same
plane with similar embedding and then clusters the embedding
vectors through mean shift clustering. Compared with the other
three CNN-based methods, PlaneEmbedding runs in real time
(i.e., 32.26 fps on a single graphics processing unit (GPU)).

Nevertheless, the above-mentioned approaches still have
several shortcomings as these methods ignore vital information
in the image for plane segmentation tasks (e.g., object edges
and loss of resolution). Consequently, it is difficult to generate
accurate mask edges or detect objects of small size [24]. The
PlaneSeg proposed by this study integrates traditional CNN
architecture with three new modules to effectively combine the
learned edge features and multiscale information of an image.
In this manner, vague boundaries and difficulties in detecting
small-sized regions can be alleviated.

D. Edge-Aware CNN Models
In some dense prediction tasks (e.g., salient object detection

(SOD) [69], scene segmentation [70], and parsing [71]),
boundary localization may be inaccurate between different
classes due to the complex semantic relations of multiple
instances [71]. Currently, edge information has been used
in various vision tasks as a possible solution for improving

classification performance [72]. To leverage edge features,
a common pipeline is that the encoder or feature extractor
first learns low-level features. Then, the edge module predicts
the boundary according to these outputs. Finally, the feature
fusion process is applied to the edge features and the extracted
high-level features related to specific tasks. However, most
traditional methods suffer from lost information and do not
sufficiently learn the relationship between edge and context
features. This study, therefore, proposes PlaneSeg which
learns edge and multiscale context information, integrates
them in a pairwise manner and recovers dropped pixels in
high-level features.

The primary purpose of incorporating an edge module
in CNN models is to simultaneously decrease ambiguity
between neighboring objects and increase feature similarity
within the same class. Also, the negative influences caused
by noisy labels can be mitigated as a byproduct. For example,
SOD [73], [74], [75] is a large body of work that benefits from
edge-aware CNN models. With the aid of edge features, salient
objects with narrow stripes are detected with finer boundaries,
and thus, are more distinguishable from the background. Edge
guidance network (EGNet) [69] and SCRN [76] optimize the
corresponding tasks jointly with a one-to-one guidance module
and stacked cross-refinement units, respectively.

Besides the prevailing use of edge stream in SOD,
researchers aim to preserve boundary structures in other vision
tasks. With the restriction of boundaries, Ding et al. [70]
strengthens feature similarity within the same object in terms
of scene segmentation. For human parsing, context embedding
with edge perceiving (CE2P) [24] examines the availability
of edge details while ignoring the negative influences caused
by noisy labels. Meanwhile, by leveraging the performance
boost of the edge module, A-CE2P [77] proposes an iterative
self-correction strategy to purify the training labels. A compar-
ison of existing works with the proposed PlaneSeg is detailed
in Section III-D.

III. METHOD

The proposed PlaneSeg incorporates edge and multiscale
context information in a pairwise manner and then recovers
dropped pixels in high-level feature maps to mitigate vague
boundaries of plane masks. Specifically, three key modules
constitute the proposed PlaneSeg: the edge feature extraction
module, the multiscale module, and the resolution-adaptation
module (see Fig. 2). Here, PlaneSeg is demonstrated with the
ResNet-101 [78] backbone. All the losses are further combined
to make the proposed method end-to-end trainable. Finally,
we list the difference between our PlaneSeg to similar works
for distinguishment.

A. Revisiting SOTA Methods
PlaneRCNN is a well-performing framework for the pla-

nar segmentation task and consists of four modules. First,
the Mask R-CNN backbone takes an image as input and
generates feature maps, bounding boxes, and plane masks.
Next, a depth prediction module predicts the depth map based
on image features. Also, plane normals and plane offsets
are estimated with k-means clustering and simple algebra.
Finally, the refinement network integrates the preliminary
plane masks and depth map to produce finer segmentation
masks. Unlike PlaneRCNN which can be trained end-to-end,
PlaneEmbedding is a two-stage framework. First, a CNN
is trained to extract per-pixel embedding, where the pixels

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on April 09,2023 at 07:16:03 UTC from IEEE Xplore. Restrictions apply.

4 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Fig. 2. Left: Network architecture of PlaneSeg based on ResNet-101 [78]. Image features are extracted by ResNet blocks (denoted by Ci
b , i = 1, 2, 3, 4, 5).

These features then flow parallel into the multiscale module (lower) and the edge feature extraction module (upper). The multiscale module fuses features of
different sizes and generates context features Pi

o (i = 2, 3, 4, 5, 6). The edge feature extraction module generates edge features (denoted by Ci
e , i = 2, 3, 4) and

edge probability map through Ed1(·) and Ed2(·), respectively. Next, the resolution-adaptation module (middle) integrates the context features and edge features
pairwisely and restores dropped pixels from high-level feature maps. The resolution-adaptation module output features are denoted as Pi

n (i = 2, 3, 4, 5, 6).
Top Right: Ed1(·) consists of step-down layers and a bottleneck layer. The step-down layer is responsible for reducing the channel number by 2. It consists
of a bottleneck layer and a 1 × 1 conv layer. N denotes the channel number of the input feature of the step-down layer. The step-down layer is repeated
according to the input feature shape to produce an output feature map of 256 channels. Bottom Right: The adaptation operation differs for the features in
different resolution levels (i = 2, 3, 4). Each adaptation operation takes features of the same resolution (e.g., P4

o and C4
e) as input and produces the refined

feature.

of the same planar instance are expected to have similar
embedding representations. Then, plane instances are obtained
by using the mean shift algorithm to cluster the embedding
vectors. Third, considering the consistency between pixel-level
and instance-level, the parameters for each plane instance
are estimated. Recently, PlaneRecNet leverages the power
of single-stage instance segmentation network SOLOv2 [68].
First, the ResNet backbone extracts feature from the given
image, which is then fed into the instance segmentation branch
and the depth decoder branch separately. In the instance
segmentation branch, plane instances are predicted through the
dynamic convolution operation. In the depth decoder branch,
the reconstructed depth map is obtained from upsampled
features and can be used for computing plane parameters
by RANSAC.

Although existing planar region segmentation methods
have already incorporated important geometric constraints to
address the limitations in previous works, such as predicting
the limited number of planes, however, these state-of-the-art
models could be further strengthened from the feature level.
For instance, the boundary of the plane is still not explicitly
modeled. That is, the complementarity between edge and
plane information is yet to be noticed. To this end, this study
designed PlaneSeg to learn boundary features. Moreover, the
PlaneSeg extracted multiscale context information cooperates
with edge features in a pairwise manner. Also, the dropped
pixels are resampled for higher level feature maps.

B. Network Architecture
1) Multiscale Module: Several recent studies show that

richer multiscale information can help convolutional networks
to extract more useful and robust features [79], [80]. Each
ResNet block is formally denoted as blocks blocki (i =

1, 2, . . . , 5), and the output feature maps of each block as Ci
b.

Traditional methods [24] first learn multiscale context from C5
b

and then concatenate it with C2
b. We improved the traditional

method by leveraging all context information between C2
b

and C5
b. Our method not only learns features of multiple

scales and levels but also preserves the different sizes of
ResNet feature maps, which is crucial for the pairwise feature
fusion process in the resolution-adaptation module. In our
experiments, feature pyramid network (FPN) [81] is adopted to
assist in multiscale context extraction. We define the functions
of FPN by Pyi (·) (i = 2, 3, 4, 5, 6), and outputs by Pi

o. Then,
we have the relationship between FPN and ResNet

Pi
o =

Pyi

(
Ci

b

)
+ Up

(
Pi+1

o

)
, i = 2, 3, 4

Pyi
(
Ci

b

)
, i = 5

Pyi
(
Pi−1

o

)
, i = 6

(1)

where Up(·) refers to upsampling by bilinear interpolation.
Pyi (·) is a combination of two convolution layers with kernel
sizes of 1 and 3. It is easily noticed that in (1), feature maps
with two different perceptive fields are added. This operation
combines multiscale contexts in a simple yet effective manner.

2) Edge Feature Extraction Module: Similarly, in this part,
the edge feature extraction module shares the features learned
by ResNet to reduce computation costs. We consider the edge
module as a function of C2

b, C3
b, and C4

b, denoted by Ed(·).
To define Ed(·), we exclude the feature maps from the first
layer C1

b and the last layer C5
b of ResNet blocks. The reason

is that for C1
b, its receptive field is small because block1

directly acts on the input image [82]. Even though C5
b has

the largest receptive field among the five feature maps, when
we perform upsampling by bilinear interpolation in the edge
module, details of edge information may be lost heavily. Here,
Ed(·) consists of two phases denoted by Ed1(·) and Ed2(·).

Now, we have Ed(·) = Ed2(Ed1(·)). The first phase calcu-
lates the corresponding edge features w.r.t. Ci

b (i = 2, 3, 4),

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on April 09,2023 at 07:16:03 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: PlaneSeg: BUILDING A PLUG-IN FOR BOOSTING PLANAR REGION SEGMENTATION 5

denoted by Ci
e. Ed1(·) learns edge features and decreases the

number of feature map channels. Different from the traditional
method [77] that reduces channels in a brute way (with only
one conv layer), we employ a smooth and step-down approach.
For each Ci

b, we decrease the number of channels by a factor
of 2 in each step until we obtain the desired number. For
clarity, this step is described as

Ci
e = Ed1

(
Ci

b

)
. (2)

Here, Ed1(·) consists of multiple convolutional layers. For
different i , the input channel number may vary. The detailed
structure of Ed1(·) is shown in Fig. 2. We adopt the bottle-
neck architecture proposed by [78] to help generate the edge
features. The bottleneck architecture consists of three conv
layers. The first 1 × 1 conv layer reduces the channel number
to a quarter, which is then restored by the last 1 × 1 conv
layer. The 3 × 3 convolution in the middle is responsible for
extracting information from the compressed features. We adopt
this method as the basic feature extraction unit in Ed1(·).

Next, we build a step-down layer by combining a bottleneck
with a 1 × 1 conv layer. The 1 × 1 conv is responsible
for reducing the channel number by a factor of 2. In Ed1(·),
multiple step-down layers are stacked, and each layer halves
the number of channels. These step-down layers smoothly
reduce the channel number to 256. Finally, we attach another
bottleneck layer to the last step-down layer to generate edge
features. These features will be fused with the output of the
multiscale module in the next resolution-adaptation module.

The second phase is edge prediction

ê = Ed2
(
C2

e, C3
e, C4

e

)
= Conv1

(
Concat

{
Up

(
Conv3

(
Ci

e

))}
i=2,3,4

)
(3)

where ê is the predicted edge probability map. Each value
of ê denotes the probability of the corresponding pixel being
on an edge. Up(·) refers to bilinear upsampling. This oper-
ation upsamples all feature maps to the same size, making
subsequent concatenation operation reasonable. Conv1(·) and
Conv3(·) denote convolution layers with a kernel size of
1 and 3, respectively. In order to generate a probability map, all
Conv layers have an output channel dimension of 2. In detail,
we first use 3 × 3 convolution layers to reduce the channel
number of Ci

e (i = 2, 3, 4) to 2. Next, we upsample these
three features to the same size and concatenate them. Finally,
we apply a 1 × 1 conv layer to fuse three edge probabil-
ity maps. To train this module end-to-end, we generate the
ground truth edge labels from plane mask labels and supervise
the learning process with the edge loss Ledge described in
Section III-C. The gradient of Ledge will be backpropagated
to update the parameters of this module, and the quality of
Ci

e will be further improved. In the next process, we combine
the edge feature with the multiscale context feature pairwisely
and recover dropped pixels.

3) Resolution-Adaptation Module: In order to segment pla-
nar instances, especially the ones of small sizes features with a
high resolution are critical. However, high-level features have a
much smaller size compared with the original input image due
to downsampling. Therefore, we design a resolution-adaptation
module that can integrate the features learned by the previous
two modules and adaptively capture the dropped features
at higher levels. Compared with the common approach that
fuses features by a trivial concatenation, we design a pair-
wise feature fusion method in this module based on some

observations of the aforementioned two modules. Intuitively,
this pairwise fusion help to sample pixels from two aspects,
i.e., edge-related area, and body-aware area. With such, the
pixels dropped by downsampling operations [83] can be
resampled, where a 2 × 2 max pooling operation can dropout
three-quarters of pixels from the original resolution. In our
edge feature extraction module, we obtain feature maps of
three different sizes (e.g., 160 × 160, 80 × 80, and 40 × 40 in
PlaneRCNN). Also, the features Pi

o (i = 2, 3, 4) extracted from
the multiscale module happen to share the same sizes. Conse-
quently, based on this observation, we fuse the corresponding
features of the same size. First, our resolution-adaptation mod-
ule aggregates feature from the aforementioned two modules
by lateral connection, which keeps information flowing at
the same resolution level. To further recover dropped pixels,
the adaptation operation is parameterized by compositions of
convolutional filters.

In this way, not only does this module integrate the two
types of features but it can also learn the relationship between
edge and multiscale context information. Now, we define the
renewed features as

Pi
n =

{
Tri

(
Pi

o + Ci
e

)
, i = 2, 3, 4

Pi
o, i = 5, 6

(4)

in which

Tr2 = Conv3(·) ◦ Conv3(·) ◦ Conv1(·)

Tr3 = Conv1(·) ◦ Conv1(·)

Tr4 = Conv1(·) (5)

where ◦ denotes function composition. The number of output
channels is set to 256 among all conv layers. In Tri (·)
(i = 2, 3, 4), we use filters to recover the dropped features.
Since features from earlier layers have a relatively large size,
we use multiple conv layers with larger kernels for these
features to adjust the receptive field.

This module generates five features (P2
n to P6

n), each of
which has exactly the same shape as the corresponding
one in the features generated by ResNet (C1

b to C5
b). Thus,

we can easily forward the newly generated features to the
plane segmentation model smoothly as it could treat each
Pi

n as the original backbone Ci−1
b . Therefore, the way the

resolution-adaption module gets plugged into the segmentation
model varies with different segmentation models. For example,
PlaneRCNN is based on MaskRCNN, so after our PlaneSeg
learns edge features, Pi

n are fed into the following RPN (region
proposal network) of MaskRCNN, where these features com-
municate with each other. And for PlaneEmbedding, based on
the model structure of the public code, only P2

n is used for
plane segmentation. Therefore, to integrate all edge features
into Pi

n , we add each Pi
o and Ci

e(i = 2, 3, 4) followed by
the transformation function (two 1 × 1 conv layers) before
Pi

o are upsampled in the multiscale module. For instance,
in PlaneEmbedding, P2

o = Up(Tr(P3
o + C3

e)). To sum up, it is
relatively flexible to design the pipeline to get the output of
the resolution-adaption module and plug it into the following
segmentation model, and this depends on the structure of the
segmentation network. Fig. 2 shows the network architecture
based on PlaneRCNN, but the structure of PlaneSeg may vary
in different conditions. In the following steps, the features will
facilitate the original plane segmentation model.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on April 09,2023 at 07:16:03 UTC from IEEE Xplore. Restrictions apply.

6 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

C. Loss Function

The hybrid loss function of each model generally contains
two terms, namely, the edge loss that assists in preserving
boundary information, and the loss of the original plane
segmentation model. Formally, the hybrid loss is

L = λeLedge + λsLseg. (6)

Here, Ledge is the edge loss. Lseg denotes the segmentation
loss from the original model. λe and λe are hyperparameters.

1) Edge Loss: We hope to learn boundary-aware features,
which can further facilitate the performance of downstream
modules. Intuitively, this loss should explicitly preserve the
edges of ground truth plane masks. Thus, the mismatch
between predicted edges and labels is penalized by a weighted
cross-entropy loss

Ledge =
1
N

∑
ei =1

N−

N
log êi +

∑
ei =0

N+

N
log

(
1 − êi

). (7)

Here, N denotes the number of pixels in an image, N+

and N− denote the number of edge pixels and other pixels,
respectively, ei denotes the edge label of the i th pixel, and
êi denotes the probability of the i th pixel being on edge.
Also, ei = 1 indicates edge region, and ei = 0 otherwise.
In A-CE2P [77], only edge pixels contribute to Ledge. However,
our experiments show that this does not improve model
performance (see Table I).

2) Loss Related to PlaneRCNN: In the content of PlaneR-
CNN, Lseg is defined as

Lseg = Lcls + Lbbox + Lmask + Ldepth + Lrefine + Lwarp. (8)

The first three terms are for training its mask R-CNN back-
bone, while the remaining terms are for other modules in
PlaneRCNN. That is, Lcls, Lbbox, and Lmask are for proposal ID
classification, bounding box regression, and mask prediction,
respectively. Ldepth is for depth prediction which further facil-
itates the mask refinement module. Lrefine is the cross-entropy
loss that forces the refinement module to improve the accu-
racy of plane masks. And Lwarp denotes the warping loss
that preserves the consistency of depth map outputs between
nearby video frames. Please refer to [13] and [23] for further
explanations.

3) Loss Related to PlaneEmbedding: In the content of
PlaneEmbedding, Lseg is defined as

Lseg = Lemb + Lpln + Lpp + Lip. (9)

In this equation, Lemb denotes the loss to train the plane
embedding module. Lpln is for planar/nonplanar region pre-
diction. Lpp and Lip are for pixelwise and instance-level plane
parameter prediction, respectively.

4) Loss Related to PlaneRecNet: In the content of
PlaneRecNet, Lseg is defined as

Lseg = Lins + Ldepth + Lgrad + Lnorm. (10)

In this equation, Lins denotes the loss to train the instance
segmentation module, and Ldepth is for pointwise depth predic-
tion. Lgrad and Lnorm are constraints using gradient and normal
planes, respectively.

D. Comparison With Similar Works

Here, we discuss the difference between the use of edge
information in PlaneSeg and most similar works in planar
region segmentation, semantic segmentation, and SOD. Cur-
rent planar region segmentation works address the limitations
in previous works, such as requiring a maximal number
of planes. However, these tend to simply stack multilayer
features, which could be further strengthened from the feature
level. To this end, we design PlaneSeg to learn boundary fea-
tures. Moreover, the multiscale context information PlaneSeg
extracts can cooperate with edge features pairwisely. Also, the
dropped pixels are restored in higher level feature maps. That
is, PlaneSeg can be easily integrated into them to improve
their performance at a negligible cost, which also proves its
efficiency.

Compared with methods leveraging edge cues in semantic
segmentation and SOD, the major differences are: 1) feature
maps where the receptive field is small or big are excluded; 2)
a smooth and step-down approach for edge feature extraction;
and 3) weighted cross-entropy is used to take into account
both edge and nonedge regions. First, feature maps with a
small receptive field directly act on the input image and
originally contain many low-level features, such as edges
and corners. For feature maps with a large receptive field,
when performing upsampling by bilinear interpolation, edge
information details may be heavily lost. These details are
ignored by most works in semantic segmentation and SOD.
For example, recent gated-shape CNN (SCNN) [84] and
PAGE [85] utilize all feature maps generated by the backbone.
Second, different from the traditional method [77], which
reduces channels in a brute way (with only one conv layer)
that could result in information loss, a smooth and step-down
approach is employed. Third, for computing loss function,
most works [69], [84], [86] simply use binary cross-entropy
while ignoring the extreme imbalance between the number of
edge pixels and nonedge pixels. Besides, PAGE [85] directly
uses L2 loss, A-CE2P [77] only considers edge pixels and
CGBNet [87] does not calculate the loss of edge informa-
tion but treats it as the weighting coefficient of the feature
maps, while we use weighted cross-entropy that considers the
imbalance.

Furthermore, we make a detailed exploration of our
resolution-adaption module, which utilizes the convolutional
layer to fuse features of the edge module and the context
module in a pairwise manner. Compared with other works,
the major differences are: 1) our resolution-adaptation module
adopts a learnable form to adaptively fuse features of the edge
module and the context module, which is regarded as a more
efficient data-driven approach. However, most works [77],
[88] simply perform elementwise addition or channelwise
concatenation, which is unsuitable for the task of recov-
ering dropped pixels. For example, decouple segmentation
network (DSN) [86] simply adopts the elementwise addition
between edge features and body features to produce the
final segmentation map. Owing to the adoption of multiple
downsampling operations like the max-pooling layer, simple
elementwise addition is incapable of correcting heavy bound-
ary distortion and, thus, provides trivial help in recovering
dropped pixels. Therefore, we design architecture compos-
ites of convolutional layers to perform recovery. Specifically,
the resolution-adaptation module adaptively selects the fea-
tures for finer feature maps in different resolution levels.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on April 09,2023 at 07:16:03 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: PlaneSeg: BUILDING A PLUG-IN FOR BOOSTING PLANAR REGION SEGMENTATION 7

2) Our resolution-adaptation module conducts a pairwise
matching to integrate the edge feature and context feature of
the same resolution level. On the contrary, CE2P [24], pyra-
midical gather-excite context (PGEC) [89], and CGBNet [87]
simply upsample edge features into the same resolution and
then concatenate them with other features. To this end, the
proposed pairwise fusion is capable of effectively restoring
dropped pixels in higher level feature maps thereby outper-
forming current methods.

IV. EXPERIMENTS

A. Implementation Details
For a fair comparison, we choose ResNet-101 as the feature

extractor in all experiments. We train our model on the
ScanNet dataset. Since the authors of PlaneEmbedding and
PlaneRCNN use different data divisions for training and test-
ing and both of them are not made public, we build a training
set with 32K images and a test set with 800 images for a fair
comparison. We retrain PlaneEmbedding and PlaneRCNN on
the built training set using the official code. Also, to improve
the quality of the training data, we exclude similar views and
filter out blurry frames. Specifically, from every 50 continuous
video frames, we choose the one with the highest variation of
the Laplacian [91] and finally acquire a training set with 32 000
images. We train models for ten epochs on a 1080Ti GPU,
and it takes 2.5 days to train PlaneRCNN and five hours to
train PlaneEmbedding. During training, the hyperparameters
remain the same as the official implementation. As to the
weight parameters in the hybrid loss function (6), λe and λs
are both set to 1.

B. Datasets and Metrics
We have evaluated PlaneSeg on two public benchmark

datasets: ScanNet [12] and NYUv2 [90]. ScanNet is a
large-scale indoor RGB and depth (RGBD) video dataset
with 1513 scenes and 2.5M views. In this article, we use
the plane labels generated by Liu et al. [13] and randomly
select 800 images as the test set. The NYUv2 dataset
for indoor instance segmentation consists of 1449 RGB
and depth image pairs. We use the public test set of
654 images and the plane labels produced by Yu et al. [22] for
evaluation.

For quantitative evaluation, we adopt average precision (AP)
with intersection over union (IOU) threshold 0.5 and 3 depth
thresholds (0.3, 0.6, and 0.9 m), per-pixel recall, per-plane
recall, and three other metrics that are designed for clustering
comparison [92], [93] as follows.

1) Variance of Information: The variance of information
(VoI) measures the difference between two clusters S and G
by

VoI(S, G) = H(S) + H(G) − 2 I (S, G) (11)

where H and I are the entropy and mutual information
between two clusters. S and G refer to the predicted plane
segmentation result and ground truth, respectively.

2) Rand Index: The rand index (RI) metric compares the
compatibility of planar instance assignments of S and G as

RI(S, G) =
2(Ns + Nd)

N (N − 1)
(12)

TABLE I
COMPARISON WITH DIFFERENT METHODS FOR CALCULATING Ledge ON

SCANNET. P-Pixels DENOTES ONLY USING POSITIVE PIXELS [77],
WHILE A-Pixels DENOTES USING ALL PIXELS (OURS)

where N represents the number of pixels in an image, and
Ns and Nd denote the number of pixel pairs that have the
same/different plane IDs both in S and G.

3) Segmentation Covering: We first define the covering
C(·, ·) of S by G by

C(S → G) =
1
N

∑
PS∈S

|P| max
PG∈G

IoU(PS, PG) (13)

where PS and PG are planar regions of S by G, respectively,
and IoU(·, ·) is the intersection of union of two planar regions.
Then, segmentation covering (SC) is defined as

SC(S, G) =
1
2
(C(S → G) + C(G → S)). (14)

These metrics are suitable for this task because we only
focus on whether different plane instances are assigned with
different plane IDs instead of what the IDs are. Besides,
we can easily derive that if we apply a permutation to
plane IDs, then the numeric results of these three metrics will
not change.

Furthermore, to evaluate the segmentation accuracy around
plane boundaries, we adopt the methodology proposed by [94].
More precisely, we count the relative number of incorrectly
classified pixels within a trimap of different bandwidths.
Here, trimap refers to a narrowband around the ground truth
boundaries, and the bandwidth of a trimap represents the width
of the narrowband. This metric is suitable to evaluate how well
an algorithm performs near the object boundaries.

Moreover, we evaluate depth prediction while six standard
metrics following [22], including absolute relative error (Rel),
log 10 error (log10), linear root-mean-square error (RMS), and
accuracy under three thresholds (σ1, σ2, and σ3).

C. Experimental Results
1) Comparison With State of the Art: In the loss function,

we calculate the edge loss over all pixels instead of only on
positive ones as A-CE2P does. Table I shows the comparison
between both methods based on PlaneRCNN, and it can be
seen that the model using all pixels for edge loss provides
a better result. The reason is that the area of edge regions
is relatively small. Thus, the positive pixel strategy only
constrains a small portion of pixels, leading to the problem
that the features are only partly updated. In such cases, the
nonedge pixels are ignored and may contain many more false
positive predictions. However, when learning through the loss
of each pixel of an image, the edge features of the whole image
will be updated, and it brings performance improvement.

We then evaluate PlaneSeg on ScanNet and NYUv2 datasets
quantitatively. Besides, we follow the tradition [13], [22] of not
measuring AP metrics on the NYUv2 dataset. As is shown
in Table II, PlaneSeg improves PlaneRCNN and PlaneEm-
bedding in terms of all evaluation metrics. We calculate the
performance gain by dividing the difference by the original

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on April 09,2023 at 07:16:03 UTC from IEEE Xplore. Restrictions apply.

8 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Fig. 3. Plane segmentation results in ScanNet (the first two rows) and NYUv2 (the last two rows) datasets. Source denotes the input RGB image. P.E., P.R.,
P.N., and P.S. denote PlaneEmbedding, PlaneRCNN, PlaneRecNet, and PlaneSeg, respectively. Please note that ground truth segmentations are generated by
graph cut methods [12], [90] instead of human annotation, and thus contain errors (e.g., in row 1, the graph cut method mistakenly connects part of the wall
with the whiteboard). Nevertheless, even though there are incorrect instance segmentation annotations in the datasets, our method can still successfully learn
plane features during training to generate correct plane segmentation results.

TABLE II
PLANE SEGMENTATION RESULTS ON SCANNET AND NYUV2 DATASETS.

P.E., P.R., P.N., AND P.S. DENOTE PLANEEMBEDDING, PLANERCNN,
PLANERECNET, AND PLANESEG, RESPECTIVELY. ARplane AND

ARpixel DENOTE PER-PLANE RECALL AND PER-PIXEL RECALL
UNDER A DEPTH THRESHOLD OF 1.0 M, RESPECTIVELY.

BESIDES, WE FOLLOW THE TRADITION [13], [22] OF
NOT MEASURING AP METRICS ON THE NYUV2

DATASET. SEG, DET, REC, AND DEP REPRESENT
PLANE SEGMENTATION, PLANE DETECTION,

PLANE RECONSTRUCTION, AND DEPTH
PREDICTION, RESPECTIVELY

value. Performance gains (calculated by the relative change)
on the ScanNet dataset over PlaneRCNN [13] are 2.3%, 1.2%,
2.5%, 0.8%, 3.6%, 4.3%, 3.4%, and 1.5%, and the gains
over PlaneEmbedding [22] are 16.7%, 4.4%, 11.3%, 77.8%,
51.5%, 32.6%, 29.9%, and 25.2%, for the metrics VOI, RI,
SC, AP0.3 m, AP0.6 m, AP0.9 m, per-plane recall, and per-pixel
recall (depth threshold = 1), respectively.

Also, following [22], to validate the generalization ability
of PlaneSeg, we directly use all models trained on ScanNet
for evaluation on NYUv2. On the unseen NYUv2 dataset,
our PlaneSeg can improve PlaneRCNN by 3.7%, 0.73%, and
1.3%, and improve PlaneEmbedding by 7.2%, 2.1%, and 5.9%
for VOI, RI, and SC, respectively. Again, in both quantitative
and qualitative evaluation, PlaneSeg brings a significant per-
formance boost to them, which suggests that our PlaneSeg

maintains the generalization ability of models trained on
ScanNet.

Besides, we show the segmentation results of our proposed
method in Fig. 3. From these illustrations, the existing three
methods fail to detect and segment some objects with complex
boundaries, such as the closestool in the second row and the
irregular wall in the fourth row. However, PlaneSeg is able to
constrain the contours of planar regions even for small objects
by utilizing the information of edge features and multiscale
context, and by recovering dropped pixels. We can observe
major improvements in Fig. 3, e.g., the problem of incorrect
segmentation of wall is solved by ours, and the mask of
closestool is corrected with the help of the edge information
(the second row). Also, our proposed method is capable of
detecting small planar regions compared with the original
methods, e.g., the monitor in the third row.

Based on Table II and Fig. 3, we analyze how PlaneSeg
improves the two models in different ways. That is, why
PlaneSeg brings a relatively large improvement to PlaneEm-
bedding than PlaneRCNN? The reason is that our PlaneSeg
contributes to PlaneEmbedding by merging scattered regions.
The segmentation results for PlaneEmbedding have remark-
able characteristics, wherein even though the edges of masks
are finer compared with PlaneRCNN, the mean shift cluster-
ing algorithm in PlaneEmbedding introduces small dispersive
clusters in the plane instance, which explains why VoI, RI,
and SC perform better, while other metrics are lower on
ScanNet. From the definitions of VoI, SC, and RI, it can be
known that when a plane is divided into two regions with
one occupying a large region and the other a small region,
these three metrics will suffer less influence than APs and
recalls do. APs and recalls will evidently decrease because the
smaller region does not satisfy an IoU of 0.5 (the threshold
in our experiments). When adding our PlaneSeg, the small
regions merge together because the model is fed with edge
information, and thus, can better distinguish features within a
plane and near boundaries. Consequently, PlaneSeg improves
PlaneEmbedding in terms of all metrics, especially for APs
and recalls. Second, when integrated into PlaneRCNN, Plane-
Seg is conducive to learning accurate edges. With the region

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on April 09,2023 at 07:16:03 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: PlaneSeg: BUILDING A PLUG-IN FOR BOOSTING PLANAR REGION SEGMENTATION 9

Fig. 4. Results of depth prediction on NYUv2 dataset. The selected samples
include cluttered (first), small (second), as well as narrow planar regions (third)
and are collected from overdark and overlight scenes (fourth, fifth, and sixth).

proposal technique, PlaneRCNN does not produce annoying
scattered points as PlaneEmbedding does, which is part of
the reason why PlaneRCNN obtains higher APs and recalls.
However, the masks tend to have irregular curving edges. From
the image pairs in Fig. 3, PlaneSeg successfully extracts edge
features that further constrain the contours of planar regions.
For example, in the first row, the black side of the drawer and
the floor with shadow are grouped together by PlaneRCNN,
but they are separated by the edge features learned by Plane-
Seg. When integrated into PlaneEmbedding, PlaneRecNet, and
PlaneRCNN, PlaneSeg is connected at different positions.
In PlaneEmbedding, PlaneSeg is placed at a higher level, while
in PlaneRCNN it is placed at a lower level. We believe this
difference can partially explain why the performance gains are
smaller in PlaneRCNN. We also infer that PlaneSeg will bring
more performance boosts if it is placed at a higher level.

Furthermore, we demonstrate how our PlaneSeg improves
3-D reconstruction and depth prediction. We verify the
improvement of PlaneSeg for depth prediction. As shown in
Fig. 4, we see a significant improvement in solving diffi-
cult scenarios with PlaneSeg, even in overdark and overlight
scenes, for detecting cluttered, small, and narrow planes. These
results prove the effectiveness of our proposed method in an
intuitive way. Meanwhile, the 3-D reconstruction results on
ScanNet are shown in Fig. 5. By incorporating edge infor-
mation, our PlaneSeg produces much finer results near edges,
e.g., in the second column of the top group, a small part of
the wall and table are no longer indiscernible. Also, benefitting
from the multiscale information, our PlaneSeg achieves better
results on both small and large objects, e.g., the large door and
wall in the first column of the top group are better detected.
The small white pillar in the fourth column of the bottom
group, and the small planar objects in the third column of
the top group, can now be correctly segmented. The broken
segmentation of the wall in the third column of the bottom
group is also fixed.

Fig. 5. Reconstruction results on ScanNet dataset. We follow [13] of
providing 3-D rendering from segmentation results.

TABLE III
INFERENCE TIME RESULTS ON SCANNET AND NYUV2 USING A
SINGLE NVIDIA GEFORCE GTX 1080 TI GPU. ALL RESULTS

ARE MEASURED IN MILLISECONDS. P.E., P.R., P.N., AND
P.S. DENOTE PLANEEMBEDDING [22], PLANERCNN [13],

PLANERECNET [66] AND OUR PROPOSED
PLANESEG, RESPECTIVELY

Next, we conduct experiments testing the inference time.
All models run on a single NVIDIA GeForce GTX 1080 Ti
graphic card. Table III shows the average inference time
measured in milliseconds. On average, PlaneSeg takes an
additional 10.6 ms for inference. Compared with their original
inference times, PlaneEmbedding, PlaneRCNN, and PlaneRec-
Net methods integrated with PlaneSeg run 13.69%, 3.45%,
and 2.09% slower, respectively. Also, the statistic composition
of the network parameters in Table IV fairly exploits the
flexibility of our modules. As can be seen, only 8.38%,
7.06%, and 9.80% of parameters come from PlaneSeg when
it is integrated with PlaneRCNN, PlaneEmbedding, and
PlaneRecNet respectively. Compared with the number of
whole network parameters in P.S. + P.E. (i.e., 45.90 M),
our resolution-adaptation module only owns 0.09 M param-
eters, which accounts for 0.2% but provides a performance
improvement. The reason lies in that the resolution-adaptation
module helps recover dropped pixels in small feature maps.
Taking the edge feature and context feature as input, the
resolution-adaptation module efficaciously fuses feature pairs
of the same resolution. Meanwhile, our resolution-adaptation
module only consists of a few convolution layers with ele-
mentwise addition, producing a few computation costs and
parameters.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on April 09,2023 at 07:16:03 UTC from IEEE Xplore. Restrictions apply.

10 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

TABLE IV
COMPOSITION OF THE PROPOSED NETWORK PARAMETERS. E, C, AND R

DENOTE THE EDGE FEATURE EXTRACTION MODULE, MULTISCALE
MODULE, AND RESOLUTION-ADAPTATION MODULE,

RESPECTIVELY. *: P.E. [22] DECODES FEATURE MAPS
ONLY BY A FEW PARALLELED CONVOLUTION

LAYERS. AS CAN BE SEEN, PLUG-IN
MODULES TAKE UP THE MINORITY

2) Comparison With Model Variants: In PlaneSeg, several
minor architectures are utilized to make the model more
effective. Three of them are considered of utmost significance:
the exclusion of C5

b, step-down layers in the edge feature
extraction module, and the pairwise fusion operation in the
resolution adaption module. To prove these minor architectures
are effective, we conduct comparative experiments with some
model variants. We build the model variants by varying one or
more of the above-mentioned architectures. For convenience,
we named the changes as: with C5

e , without step-down layer,
and without pairwise fusion, respectively. With C5

e denotes
generating an additional edge feature from C5

b through the
function of Ed1(·). Like all other edge features, the extra
feature is used to produce the edge probability map, we then
generate P5

n by attaching an addition operation between P5
o and

C5
e . P6

n is also renewed as the 2× downsample of P5
n . Without

step-down layer denotes replacing the step-down layer with
a 1 × 1 conv layer in the edge feature extraction module
(the brute way). Without pairwise fusion denotes replacing the
Tri (·) with a trivial concatenate with 1 × 1 conv layer in the
multiscale module.

Table V shows the segmentation performance of an indi-
vidual or composed model variants. The experimental results
illustrate that all model variants bring significant performance
degradation. Here, we will give our explanations. First, the
With C5

e variant suffers from the feature size of C5
e being too

small. Even though going through the same process as other
edge features do, detailed information is lost heavily due to the
small feature map size, making the edge lines in the generated
edge probability map ambiguous. Second, the performance
degradation of without step-down layer variant is related to
the loss function. In a planar region segmentation model, the
backbone network is constrained by a combination of multiple
loss functions, not merely edge loss. Consequently, the back-
bone feature maps themselves do not contain sufficient edge
information for an edge prediction task. That is to say, with
only one conv layer, the “without step-down layer” variant
fails to extract effective edge information from ResNet blocks.
Last, the without pairwise fusion variant adopts a traditional
feature fusion method: a concatenation with 1 × 1 conv layer.

It is worth noticing that this structure is actually a superset
of an additional layer. However, when fusing edge features
with other features of the same image, they should be inter-
preted as “correction.” The addition operation naturally has
an advantage in expressing the concept of “correction,” while
the traditional fusion method is more suitable for merging two
features that are less relevant.

D. Ablation Studies
We perform ablation experiments based on PlaneRCNN to

evaluate each module in our PlaneSeg. All experiments are
conducted on the ScanNet dataset, and the results are shown
in Table VI. In our basic model (we name it plain CNN), we do
not add any proposed modules and simply use ResNet-101 as
the backbone. Since the channel numbers of Ci

b (i = 3, 4, 5)
do not match those of Pi

o, we cannot directly remove the three
modules. To reduce feature channels, we apply simple 1 × 1
conv layers to Ci

b. Also, to get P6
o, we follow the original

FPN function, i.e., P6
o = Py6(P

5
o). Results verify the positive

contribution of each component, and we give the details of
applying the three modules as follows.

1) Edge Feature Extraction Module: First, we analyze the
performance of the edge feature extraction module that learns
edge information. Based on the basic model (plain CNN),
we add a network branch that produces an edge probability
map from C2

b, C3
b, and C4

b. This network branch incorporates
learned edge information into Ci

b. The connection between
this model and the segmentation model is the same as the
basic model (plain CNN). To train this module, we use the
edge loss Ledge described in Section III-C. Because we have
not added the multiscale module, the contribution of Ledge to
the basic model is that it updates the ResNet-101 backbone
parameters. From Table VI, this module can bring about an
average improvement of 4.4% on the six metrics.

Next, experimental results of quantitative comparisons with
more existing edge modules are provided in Table VII,
including CE2P [24], boundary-guided aggregation network
(BFAN) [95] and PAGE-Net [85]. CE2P is for the human pars-
ing task. Since CE2P has a similar structure compared with
our proposed PlaneSeg, we did not change the structure when
combining its edge module with the two plane segmentation
models. Meanwhile, BFAN is designed for SOD. It conducts
attention mechanisms for fusing features and boundary cues.
PAGE-Net is also a deep network proposed for SOD, which
deploys a pyramid attention technique. For larger feature maps,
PAGE-Net performs more attention operations. Considering
the number of parameters introduced by conv layers with the
kernel size of 3 × 3, we modify the kernel size to 1 × 1 in
attention modules.

We also conduct trimap evaluation over the plain PlaneR-
CNN as well as the PlaneRCNN integrated with edge modules.
Trimap evaluates the classification accuracy near the actual
object boundaries, and thus, is useful for measuring whether a
method can produce masks with accurate boundaries. Follow-
ing [96], we evaluate on ScanNet with bandwidth values no
greater than 20. As shown in Fig. 6, PlaneSeg delivers better
results compared with previous works, especially when the
bandwidth exceeds 3. This result proves our edge module can
effectively learn accurate edges and utilize this information to
resolve the problem of ambiguous edges.

2) Multiscale Module: Second, we conduct experiments by
introducing a multiscale module. Specifically, based on the

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on April 09,2023 at 07:16:03 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: PlaneSeg: BUILDING A PLUG-IN FOR BOOSTING PLANAR REGION SEGMENTATION 11

TABLE V
SEGMENTATION RESULTS OF MODEL VARIANTS ON SCANNET DATASET. THE LAST ROW REFLECTS THE AVERAGE

DEGRADATION OF THE RELATIVE CHANGES BETWEEN EACH VARIANT AND OURS (FIRST COLUMN)

TABLE VI
ABLATIONS OF DIFFERENT COMPONENTS OF PLANESEG, INCLUDING

THE EDGE FEATURE EXTRACTION MODULE (E), MULTISCALE
MODULE (C), AND RESOLUTION-ADAPTATION MODULE (R)

TABLE VII
SEGMENTATION RESULTS ON SCANNET AND NYUV2 DATASETS USING

DIFFERENT EDGE MODULES. BESIDES, WE FOLLOW THE
TRADITION [13], [22] OF NOT MEASURING AP

METRICS ON THE NYUV2 DATASET

previous model with only the edge feature extraction module,
we add the multiscale module to produce Pi

o, (i = 2, 3, 4, 5, 6),
which are then fed to the segmentation model. In Table VI,
we can find that using this module brings an average improve-
ment of 14.9% on the six metrics. It is possible that this
is because by learning and integrating multiscale context
information, the model can detect not only distinct large planes
but also small-sized planar regions.

In order to prove that the multiscale module facilitates
detecting small-sized planes, we next provide experimental
results with regard to different plane sizes. Planes are divided
into three categories: small, medium, and large. To achieve a
fair division, we counted the size values of all the planes in
the test set. Then sort them from small to large, and divide
them into three parts that contain the same amount of planes.
Each category contains precisely 1/3 of the number of planes
in the test set. On our selected test set of ScanNet, the size
thresholds between small, medium, and large are 2267 and
10 500 pixels, respectively.

We compare PlaneSeg with existing multiscale methods.
PSPNet [97] proposes a hierarchical strategy of pooling to
grasp multiscale information. Atrous spatial pyramid pooling
(ASPP) [98] employs dilated convolution [80] to harvest
multiscale context.

Fig. 6. Segmentation accuracy within trimap (a narrowband surrounding
actual segmentation boundaries). P.R. and P.S. denote PlaneRCNN and Plane-
Seg, respectively. Bandwidth represents the width of the trimap. Pixelwise
classification error is the percentage of misclassified pixels within trimap.

TABLE VIII
PLANE SEGMENTATION AND DETECTION RESULTS WITH REGARD
TO DIFFERENT PLANE SIZES. EVALUATION IS CONDUCTED WITH

PLANERCNN ON SCANNET DATASET. “−” DENOTES
PLANERCNN WITHOUT MULTISCALE MODULE.
AP UNDER THREE THRESHOLDS ARE USED FOR

PLANE DETECTION PERFORMANCE MEASUREMENT.
MAP, MAR, AND MIOU ARE USED FOR IMAGE

SEGMENTATION PERFORMANCE MEASUREMENT
BECAUSE THE PREVIOUS METRICS CAN

NOT APPLY TO A SUBSET OF
A SEGMENTATION MAP

Per-pixel recall and per-plane recall under different plane
sizes are evaluated. The recall values are collected on the
ScanNet dataset. As shown in Fig. 7, ours provides a sig-
nificant performance improvement across all sizes, especially
for small planar regions. Among small-sized planar regions,
there is a leap between ours and the plain one without a
multiscale module, while the gap is gradually reduced as plane
size increases. This result shows our multiscale module can
improve the performance when detecting small-scale planes.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on April 09,2023 at 07:16:03 UTC from IEEE Xplore. Restrictions apply.

12 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Fig. 7. Per-pixel and per-plane recall curve with regard to different plane sizes on ScanNet. We obtain different recall values under different models and depth
thresholds. The first row shows per-pixel recall curves, while the second row shows per-plane recall curves. Each column in the figure represents experimental
results under a specific plane size range.

Fig. 8. Visualization results of different ablation models, including the edge feature extraction module (E), multiscale module (C), and resolution-adaptation
module (R). The images come from the ScanNet dataset.

Moreover, we provide plane segmentation and detection
results of different plane sizes in Table VIII. Because pre-
viously used metrics VoI, RI, and SC are not suitable to
evaluate a subset of the segmentation result, we adopt three
metrics that are commonly used in image segmentation tasks:
mAP, mAR, and mIOU to measure the quality of produced
plane masks. The experimental results show that, over the
six metrics, the multiscale module can not only bring a great
improvement compared with the plain PlaneRCNN method but
also outperform other similar modules.

Performance improvements are mainly due to the effective
integration of shallow and deep features by the multiscale
module. Generally speaking, only the coarsest features are
utilized in traditional CNNs, while the superficial features are
often ignored. A considerable amount of detailed information
is lost in deep features due to their small size. However,
detailed information is extremely important when detecting
and segmenting small planar regions. By integrating feature
maps of different layers, our approach preserves the details in
shallow features without losing semantic information learned
in deeper layers.

3) Resolution-Adaptation Module: Finally, we evaluate the
performance of the resolution-adaptation module. As shown
in Table VI, with the above-mentioned modules, this module
leads to an average improvement of 3.9% on the six metrics.
The reason is threefold. First, the resolution-adaptation module
primarily utilizes elementwise addition to correct the feature
maps of small-sized planar objects. Second, our module adopts
the form of learnable to perform recovery. Third, there are
many small planar regions in an image, which can be treated
as a fine-grained pixelwise classification. Therefore, much
detailed information extracted by the resolution-adaptation
module assists the network in accurately identifying vari-
ous small-sized planes. Essentially, the three aforementioned
modules are coupled and supportive of each other. The
edge module and the multiscale module provide fundamen-
tal contours and context features, respectively. Next, the
resolution-adaptation module integrates the above-mentioned
features pairwisely and recovers the dropped pixels at higher
network levels.

4) Qualitative Evaluation With Different Modules: The
qualitative comparisons with different modules on ScanNet

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on April 09,2023 at 07:16:03 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: PlaneSeg: BUILDING A PLUG-IN FOR BOOSTING PLANAR REGION SEGMENTATION 13

Fig. 9. Visualization of feature maps. Obtained from the multiscale module
(C), edge feature extraction module (E), and resolution-adaptation module
(R), respectively. Given the features obtained from C and E, our proposed
resolution-adaptation module mitigates the gap between them and extracts
semantic information for detecting planes, where the plane areas are assigned
with high activations.

are shown in Fig. 8. We use E , C , and R to denote the edge
feature extraction module, multiscale module, and resolution-
adaptation module, respectively. As observed in Fig. 8, the
planar region detection accuracy increases as more modules
are attached. First, the edge feature extraction module helps
differentiate the plane areas more clearly. The edge infor-
mation of planar regions is an underlying constraint that
mitigates the vague boundaries of nearby planes. It resolves the
stickiness problem of different planar regions in the original
method, as well as that of a planar region being incorrectly
divided into multiple small ones. As shown in the third row,
in the original method, the upper part of the whiteboard is
mixed with the wall, which led to the whole whiteboard being
erroneously divided into several small areas. At the same
time, the lower part of the wall is also mistakenly divided
into another small area. With the edge feature extraction
module, the whiteboard and the wall are correctly separated by
utilizing the edge information. Second, the multiscale module
enhances the ability of the model to detect small-scale planes.
For example, the cabinet doors in the first row, the cabinets
on the table in the third row, and the objects on the table in
the fourth row are difficult to segment correctly without this
module. However, these small and messy objects can be clear
as well as accurately separated if the multiscale module is
added. Finally, the resolution-adaption module integrates the
above-mentioned two modules to generate high-quality planar
inspection results.

Based on Fig. 8, Fig. 9, and the aforementioned analysis,
we make the following observations: 1) plain CNN has some
issues, such as vague boundaries, while the model of E can
mitigate this effect by utilizing the edge information. 2) The
model of E + C captures more detailed information than the
model of E . 3) The proposed PlaneSeg (i.e., E +C +R) gener-
ates better segmentation results due to the resolution-adaption
module that integrates edge features and multiscale context
information pairwisely, then recovers dropped pixels in small
feature maps.

V. CONCLUSION

In this article, we propose a universal planar region seg-
mentation framework, PlaneSeg, which is end-to-end trainable

and can be easily integrated into various plane segmentation
models to improve performance. PlaneSeg consists of three
key modules, namely, the edge feature extraction module,
the multiscale module, and the resolution-adaptation module.
Specifically, we use the edge feature extraction module to learn
edge features and constrain object contours, use the multiscale
module for extracting multiscale semantic information, and
use the resolution-adaptation module to integrate the former
features pairwisely and capture the lost details of features in
higher layers. The experimental results demonstrate that the
proposed PlaneSeg can boost existing methods to achieve the
new state-of-the-art on the ScanNet and NYUv2 datasets by a
large margin.

REFERENCES

[1] D. Kim, S. Chae, J. Seo, Y. Yang, and T.-D. Han, “Realtime plane
detection for projection augmented reality in an unknown environment,”
in Proc. IEEE Int. Conf. Acoust., Speech Signal Process. (ICASSP),
Mar. 2017, pp. 5985–5989.

[2] Y. Kim and H. Woo, “Integrating a deep learning-based plane detector
in mobile AR systems for improvement of plane detection,” in Proc. 8th
Int. Conf. Comput. Artif. Intell., Mar. 2022, pp. 597–602.

[3] Z. Fu and W. Hu, “Dynamic point cloud inpainting via spatial–temporal
graph learning,” IEEE Trans. Multimedia, vol. 23, pp. 3022–3034, 2021.

[4] H. Park, H. Lee, and S. Sull, “Efficient viewer-centric depth adjustment
based on virtual fronto-parallel planar projection in stereo 3D images,”
IEEE Trans. Multimedia, vol. 16, no. 2, pp. 326–336, Feb. 2014.

[5] J. Liu et al., “PlaneMVS: 3D plane reconstruction from multi-view
stereo,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2022, pp. 8665–8675.

[6] H. Zhu et al., “VPFNet: Improving 3D object detection with virtual
point based LiDAR and stereo data fusion,” IEEE Trans. Multimedia,
early access, Jul. 11, 2022, doi: 10.1109/TMM.2022.3189778.

[7] S. Yang and S. Scherer, “Monocular object and plane SLAM in
structured environments,” IEEE Robot. Autom. Lett., vol. 4, no. 4,
pp. 3145–3152, Oct. 2019.

[8] V. Patil, C. Sakaridis, A. Liniger, and L. Van Gool, “P3Depth:
Monocular depth estimation with a piecewise planarity prior,” in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2022,
pp. 1610–1621.

[9] C. Liu, J. Yang, D. Ceylan, E. Yumer, and Y. Furukawa, “PlaneNet:
Piece-wise planar reconstruction from a single RGB image,” in
Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., Jun. 2018,
pp. 2579–2588.

[10] Y. Li, K. W. Wan, X. Yan, and C. Xu, “Real time advertisement insertion
in baseball video based on advertisement effect,” in Proc. 13th Annu.
ACM Int. Conf. Multimedia, Nov. 2005, pp. 343–346.

[11] P. Kim, B. Coltin, and H. J. Kim, “Linear RGB-D SLAM for planar
environments,” in Proc. ECCV, 2018, pp. 333–348.

[12] A. Dai, A. X. Chang, M. Savva, M. Halber, T. Funkhouser, and
M. Niessner, “ScanNet: Richly-annotated 3D reconstructions of indoor
scenes,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jul. 2017, pp. 5828–5839.

[13] C. Liu, K. Kim, J. Gu, Y. Furukawa, and J. Kautz, “PlaneRCNN:
3D plane detection and reconstruction from a single image,” in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2019,
pp. 4450–4459.

[14] L. Lin, W. Zhang, M. Cheng, C. Wen, and C. Wang, “Planar primitive
group-based point cloud registration for autonomous vehicle localization
in underground parking lots,” IEEE Geosci. Remote Sens. Lett., vol. 19,
pp. 1–5, 2022.

[15] A. Roychoudhury, M. Missura, and M. Bennewitz, “Plane segmentation
in organized point clouds using flood fill,” in Proc. IEEE Int. Conf.
Robot. Autom. (ICRA), May 2021, pp. 13532–13538.

[16] L. Huynh, P. Nguyen-Ha, J. Matas, E. Rahtu, and J. Heikkilä, “Guiding
monocular depth estimation using depth-attention volume,” in Proc.
ECCV, 2020, pp. 581–597.

[17] Z. Yu, L. Jin, and S. Gao, “P2Net: Patch-match and plane-regularization
for unsupervised indoor depth estimation,” in Proc. ECCV, 2020,
pp. 206–222.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on April 09,2023 at 07:16:03 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1109/TMM.2022.3189778

14 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

[18] L. He et al., “Rethinking supervised depth estimation for 360◦ panoramic
imagery,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.
Workshops (CVPRW), Jun. 2022, pp. 1–9.

[19] E. Delage, H. Lee, and A. Y. Ng, “Automatic single-image 3D recon-
structions of indoor Manhattan world scene,” in Proc. ISRR, 2007,
pp. 305–321.

[20] V. Hedau, D. Hoiem, and D. Forsyth, “Recovering the spatial layout of
cluttered rooms,” in Proc. IEEE 12th Int. Conf. Comput. Vis., Sep. 2009,
pp. 1849–1856.

[21] F. Yang and Z. Zhou, “Recovering 3D planes from a single image via
convolutional neural networks,” in Proc. ECCV, 2018, pp. 85–100.

[22] Z. Yu, J. Zheng, D. Lian, Z. Zhou, and S. Gao, “Single-image piece-
wise planar 3D reconstruction via associative embedding,” in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2019,
pp. 1029–1037.

[23] K. He, G. Gkioxari, P. Dollar, and R. Girshick, “Mask R-CNN,” in Proc.
ICCV, 2017, pp. 2961–2969.

[24] T. Ruan et al., “Devil in the details: Towards accurate single and multiple
human parsing,” in Proc. AAAI, 2018, pp. 4814–4821.

[25] P. Arbelaez, J. Pont-Tuset, J. Barron, F. Marques, and J. Malik, “Multi-
scale combinatorial grouping,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., Jun. 2014, pp. 328–335.

[26] J. Yao, S. Fidler, and R. Urtasun, “Describing the scene as a whole:
Joint object detection, scene classification and semantic segmenta-
tion,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Jun. 2012,
pp. 702–709.

[27] S. Hao, Y. Zhou, Y. Guo, R. Hong, J. Cheng, and M. Wang, “Real-time
semantic segmentation via spatial-detail guided context propagation,”
IEEE Trans. Neural Netw. Learn. Syst., early access, Mar. 8, 2022, doi:
10.1109/TNNLS.2022.3154443.

[28] L. Yu, X. Liu, and J. Van De Weijer, “Self-training for class-incremental
semantic segmentation,” IEEE Trans. Neural Netw. Learn. Syst., early
access, Mar. 17, 2022, doi: 10.1109/TNNLS.2022.3155746.

[29] G. Papandreou, T. Zhu, L.-C. Chen, S. Gidaris, J. Tompson, and
K. Murphy, “PersonLab: Person pose estimation and instance segmen-
tation with a bottom-up, part-based, geometric embedding model,” in
Proc. ECCV, 2018, pp. 269–286.

[30] T. Li, K. Zhang, S. Shen, B. Liu, Q. Liu, and Z. Li, “Image co-saliency
detection and instance co-segmentation using attention graph clustering
based graph convolutional network,” IEEE Trans. Multimedia, vol. 24,
pp. 492–505, 2022.

[31] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards real-
time object detection with region proposal networks,” in Proc. NIPS,
2015, pp. 1–9.

[32] P. Luc, C. Couprie, Y. LeCun, and J. Verbeek, “Predicting future instance
segmentation by forecasting convolutional features,” in Proc. ECCV,
2018, pp. 584–599.

[33] H. Zhang, Y. Tian, K. Wang, W. Zhang, and F.-Y. Wang, “Mask SSD: An
effective single-stage approach to object instance segmentation,” IEEE
Trans. Image Process., vol. 29, pp. 2078–2093, 2019.

[34] W. Liu et al., “SSD: Single shot MultiBox detector,” in Proc. ECCV,
2016, pp. 21–37.

[35] S. Li, Y. Liu, and J. Gall, “Rethinking 3-D LiDAR point cloud
segmentation,” IEEE Trans. Neural Netw. Learn. Syst., early access,
Dec. 16, 2021, doi: 10.1109/TNNLS.2021.3132836.

[36] S. P. Lim and H. Haron, “Cube Kohonen self-organizing map (CKSOM)
model with new equations in organizing unstructured data,” IEEE Trans.
Neural Netw. Learn. Syst., vol. 24, no. 9, pp. 1414–1424, Sep. 2013.

[37] J.-G. Wu et al., “Machine learning for structure determination in single-
particle cryo-electron microscopy: A systematic review,” IEEE Trans.
Neural Netw. Learn. Syst., vol. 33, no. 2, pp. 452–472, Feb. 2022.

[38] J. Ma, J. Wu, J. Zhao, J. Jiang, H. Zhou, and Q. Z. Sheng, “Nonrigid
point set registration with robust transformation learning under manifold
regularization,” IEEE Trans. Neural Netw. Learn. Syst., vol. 30, no. 12,
pp. 3584–3597, Dec. 2019.

[39] X. Zhang, Y. Zhuang, H. Hu, and W. Wang, “3-D laser-based multiclass
and multiview object detection in cluttered indoor scenes,” IEEE Trans.
Neural Netw. Learn. Syst., vol. 28, no. 1, pp. 177–190, Jan. 2017.

[40] T. Wan et al., “RGB-D point cloud registration based on salient object
detection,” IEEE Trans. Neural Netw. Learn. Syst., vol. 33, no. 8,
pp. 3547–3559, Aug. 2022.

[41] J. Liu, Y. Wang, Y. Li, J. Fu, J. Li, and H. Lu, “Collaborative
deconvolutional neural networks for joint depth estimation and semantic
segmentation,” IEEE Trans. Neural Netw. Learn. Syst., vol. 29, no. 11,
pp. 5655–5666, Nov. 2018.

[42] X. Chen, X. Chen, Y. Zhang, X. Fu, and Z.-J. Zha, “Laplacian pyramid
neural network for dense continuous-value regression for complex
scenes,” IEEE Trans. Neural Netw. Learn. Syst., vol. 32, no. 11,
pp. 5034–5046, Nov. 2021.

[43] C. Zhang, L. Wang, and R. Yang, “Semantic segmentation of urban
scenes using dense depth maps,” in Proc. ECCV. Cham, Switzerland:
Springer, 2010, pp. 708–721.

[44] A. Alush and J. Goldberger, “Hierarchical image segmentation using
correlation clustering,” IEEE Trans. Neural Netw. Learn. Syst., vol. 27,
no. 6, pp. 1358–1367, Jun. 2016.

[45] Y. Xie, M. Gadelha, F. Yang, X. Zhou, and H. Jiang, “PlanarRecon:
Realtime 3D plane detection and reconstruction from posed monocular
videos,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2022, pp. 6219–6228.

[46] K.-N. Lianos, L. Puig, A. Unagar, and S. Jiddi, “Robust planar opti-
mization for general 3D room layout estimation,” in Proc. IEEE Int.
Symp. Mixed Augmented Reality Adjunct (ISMAR-Adjunct), Oct. 2022,
pp. 875–880.

[47] M. Dahnert, J. Hou, M. Nießner, and A. Dai, “Panoptic 3D scene
reconstruction from a single RGB image,” in Proc. NeurIPS, 2021,
pp. 8282–8293.

[48] Y. Nie, X. Han, S. Guo, Y. Zheng, J. Chang, and J. J. Zhang,
“Total3DUnderstanding: Joint layout, object pose and mesh reconstruc-
tion for indoor scenes from a single image,” in Proc. CVPR, 2020,
pp. 55–64.

[49] C. Sun, C.-W. Hsiao, N.-H. Wang, M. Sun, and H.-T. Chen, “Indoor
panorama planar 3D reconstruction via divide and conquer,” in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2021,
pp. 11338–11347.

[50] C. Wang and X. Guo, “Efficient plane-based optimization of geometry
and texture for indoor RGB-D reconstruction,” in Proc. CVPRW, 2019,
pp. 49–53.

[51] Y. Li, C. Yang, W. Yan, R. Cui, and A. Annamalai, “Admittance-
based adaptive cooperative control for multiple manipulators with output
constraints,” IEEE Trans. Neural Netw. Learn. Syst., vol. 30, no. 12,
pp. 3621–3632, Dec. 2019.

[52] A. Roy, X. Zhang, N. Wolleb, C. P. Quintero, and M. Jagersand,
“Tracking benchmark and evaluation for manipulation tasks,” in Proc.
IEEE Int. Conf. Robot. Autom. (ICRA), May 2015, pp. 2448–2453.

[53] R. Balakrishnan, T. Baudel, G. Kurtenbach, and G. Fitzmaurice, “The
Rockin’Mouse: Integral 3D manipulation on a plane,” in Proc. ACM
SIGCHI Conf. Hum. Factors Comput. Syst., Mar. 1997, pp. 311–318.

[54] D. R. Valeiras, X. Lagorce, X. Clady, C. Bartolozzi, S.-H. Ieng, and
R. Benosman, “An asynchronous neuromorphic event-driven visual part-
based shape tracking,” IEEE Trans. Neural Netw. Learn. Syst., vol. 26,
no. 12, pp. 3045–3059, Mar. 2015.

[55] F. Ornelas-Tellez, E. N. Sanchez, and A. G. Loukianov, “Discrete-time
neural inverse optimal control for nonlinear systems via passivation,”
IEEE Trans. Neural Netw. Learn. Syst., vol. 23, no. 8, pp. 1327–1339,
Aug. 2012.

[56] T. Wang and H. Ling, “Gracker: A graph-based planar object tracker,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 40, no. 6, pp. 1494–1501,
Jun. 2018.

[57] O. Haines and A. Calway, “Recognising planes in a single image,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 37, no. 9, pp. 1849–1861,
Sep. 2015.

[58] D. Hoiem, A. A. Efros, and M. Hebert, “Recovering surface layout from
an image,” Int. J. Comput. Vis., vol. 75, pp. 0920–5691, Oct. 2007.

[59] A. Saxena, M. Sun, and A. Y. Ng, “Make3D: Learning 3D scene
structure from a single still image,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 31, no. 5, pp. 824–840, May 2008.

[60] A. Chuchvara, A. Barsi, and A. Gotchev, “Fast and accurate depth
estimation from sparse light fields,” IEEE Trans. Image Process., vol. 29,
pp. 2492–2506, 2020.

[61] J. Tan, W. Lin, A. X. Chang, and M. Savva, “Mirror3D: Depth
refinement for mirror surfaces,” in Proc. IEEE/CVF Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jun. 2021, pp. 15990–15999.

[62] X. Wang, D. F. Fouhey, and A. Gupta, “Designing deep networks for
surface normal estimation,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit. (CVPR), Jun. 2015, pp. 539–547.

[63] H. Ikoma, C. M. Nguyen, C. A. Metzler, Y. Peng, and G. Wetzstein,
“Depth from defocus with learned optics for imaging and occlusion-
aware depth estimation,” in Proc. IEEE Int. Conf. Comput. Photography
(ICCP), May 2021, pp. 1–12.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on April 09,2023 at 07:16:03 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1109/TNNLS.2022.3154443
http://dx.doi.org/10.1109/TNNLS.2022.3155746
http://dx.doi.org/10.1109/TNNLS.2021.3132836

ZHANG et al.: PlaneSeg: BUILDING A PLUG-IN FOR BOOSTING PLANAR REGION SEGMENTATION 15

[64] Z. Yang, L. E. Li, and Q. Huang, “StruMonoNet: Structure-aware
monocular 3D prediction,” in Proc. IEEE/CVF Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jun. 2021, pp. 7413–7422.

[65] Y. Xie, J. Rambach, F. Shu, and D. Stricker, “PlaneSegNet: Fast
and robust plane estimation using a single-stage instance segmentation
CNN,” in Proc. IEEE Int. Conf. Robot. Autom. (ICRA), May 2021,
pp. 13574–13580.

[66] Y. Xie, F. Shu, J. Rambach, A. Pagani, and D. Stricker, “PlaneRecNet:
Multi-task learning with cross-task consistency for piece-wise plane
detection and reconstruction from a single RGB image,” in Proc. BMVC,
2021, pp. 1–14.

[67] B. Tan, N. Xue, S. Bai, T. Wu, and G.-S. Xia, “PlaneTR: Structure-
guided transformers for 3D plane recovery,” in Proc. IEEE/CVF Int.
Conf. Comput. Vis. (ICCV), Oct. 2021, pp. 4186–4195.

[68] X. Wang, R. Zhang, T. Kong, L. Li, and C. Shen, “SOLOv2:
Dynamic and fast instance segmentation,” in Proc. NeurIPS, 2020,
pp. 17721–17732.

[69] J.-X. Zhao, J.-J. Liu, D.-P. Fan, Y. Cao, J. Yang, and M.-M. Cheng,
“EGNet: Edge guidance network for salient object detection,” in Proc.
ICCV, 2019, pp. 8779–8788.

[70] H. Ding, X. Jiang, A. Q. Liu, N. M. Thalmann, and G. Wang,
“Boundary-aware feature propagation for scene segmentation,” in Proc.
IEEE/CVF Int. Conf. Comput. Vis. (ICCV), Oct. 2019, pp. 6819–6829.

[71] Y. Zhao, J. Li, Y. Zhang, and Y. Tian, “Multi-class part parsing with joint
boundary-semantic awareness,” in Proc. IEEE/CVF Int. Conf. Comput.
Vis. (ICCV), Oct. 2019, pp. 9177–9186.

[72] W. Zhang, X. Wang, W. You, J. Chen, P. Dai, and P. Zhang, “RESLS:
Region and edge synergetic level set framework for image segmenta-
tion,” IEEE Trans. Image Process., vol. 29, pp. 57–71, 2019.

[73] X. Li, F. Yang, H. Cheng, W. Liu, and D. Shen, “Contour knowl-
edge transfer for salient object detection,” in Proc. ECCV, 2018,
pp. 355–370.

[74] D. Fan, Z. Lin, Z. Zhang, M. Zhu, and M. Cheng, “Rethinking RGB-D
salient object detection: Models, data sets, and large-scale benchmarks,”
IEEE Trans. Neural Netw. Learn. Syst., vol. 32, no. 5, pp. 2075–2089,
Jun. 2021.

[75] X. Qin, Z. Zhang, C. Huang, C. Gao, M. Dehghan, and
M. Jagersand, “BASNet: Boundary-aware salient object detection,”
in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2019, pp. 7479–7489.

[76] Z. Wu, L. Su, and Q. Huang, “Stacked cross refinement network for
edge-aware salient object detection,” in Proc. IEEE/CVF Int. Conf.
Comput. Vis. (ICCV), Oct. 2019, pp. 7264–7273.

[77] P. Li, Y. Xu, Y. Wei, and Y. Yang, “Self-correction for human parsing,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 44, no. 6, pp. 3260–3271,
Jun. 2022.

[78] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2016, pp. 770–778.

[79] H. Noh, S. Hong, and B. Han, “Learning deconvolution network for
semantic segmentation,” in Proc. IEEE Int. Conf. Comput. Vis. (ICCV),
Dec. 2015, pp. 1520–1528.

[80] F. Yu and V. Koltun, “Multi-scale context aggregation by dilated
convolutions,” 2015, arXiv:1511.07122.

[81] T.-Y. Lin, P. Dollar, R. Girshick, K. He, B. Hariharan, and S. Belongie,
“Feature pyramid networks for object detection,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jul. 2017, pp. 2117–2125.

[82] W. Luo, Y. Li, R. Urtasun, and R. Zemel, “Understanding the effective
receptive field in deep convolutional neural networks,” in Proc. NIPS,
2016, pp. 1–9.

[83] L. Cui et al., “Context-aware block net for small object detection,” IEEE
Trans. Cybern., vol. 52, no. 4, pp. 2300–2313, Apr. 2022.

[84] T. Takikawa, D. Acuna, V. Jampani, and S. Fidler, “Gated-SCNN: Gated
shape CNNs for semantic segmentation,” in Proc. IEEE/CVF Int. Conf.
Comput. Vis. (ICCV), Oct. 2019, pp. 5229–5238.

[85] W. Wang, S. Zhao, J. Shen, S. C. H. Hoi, and A. Borji, “Salient
object detection with pyramid attention and salient edges,” in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2019,
pp. 1448–1457.

[86] X. Li et al., “Improving semantic segmentation via decoupled body and
edge supervision,” in Proc. ECCV, 2020, pp. 435–452.

[87] H. Ding, X. Jiang, B. Shuai, A. Q. Liu, and G. Wang, “Semantic
segmentation with context encoding and multi-path decoding,” IEEE
Trans. Image Process., vol. 29, pp. 3520–3533, 2020.

[88] D. Cheng, G. Meng, S. Xiang, and C. Pan, “FusionNet: Edge aware deep
convolutional networks for semantic segmentation of remote sensing
harbor images,” IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens.,
vol. 10, no. 12, pp. 5769–5783, Dec. 2017.

[89] S. Zhang, G.-J. Qi, X. Cao, Z. Song, and J. Zhou, “Human parsing
with pyramidical gather-excite context,” IEEE Trans. Circuits Syst. Video
Technol., vol. 31, no. 3, pp. 1016–1030, Mar. 2021.

[90] N. Silberman, D. Hoiem, P. Kohli, and R. Fergus, “Indoor segmentation
and support inference from RGBD images,” in Proc. ECCV, 2012,
pp. 1–14.

[91] J. L. Pech-Pacheco, G. Cristóbal, J. Chamorro-Martínez, and
J. Fernández-Valdivia, “Diatom autofocusing in brightfield microscopy:
A comparative study,” in Proc. 15th Int. Conf. Pattern Recognit. (ICPR),
2000, pp. 314–317.

[92] P. Arbeláez, M. Maire, C. Fowlkes, and J. Malik, “Contour detection
and hierarchical image segmentation,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 33, no. 5, pp. 898–916, Aug. 2011.

[93] M. Meilă, “Comparing clusterings—An information based distance,”
J. Multivariate Anal., vol. 98, no. 5, pp. 873–895, May 2007.

[94] P. Kohli, L. Ladicky, and P. H. S. Torr, “Robust higher order potentials
for enforcing label consistency,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., Jun. 2008, pp. 302–324.

[95] Y. Zhuge, G. Yang, P. Zhang, and H. Lu, “Boundary-guided feature
aggregation network for salient object detection,” IEEE Signal Process.
Lett., vol. 25, no. 12, pp. 1800–1804, Dec. 2018.

[96] K. Philipp and K. Vladlen, “Efficient inference in fully connected CRFs
with Gaussian edge potentials,” in Proc. NIPS, 2011, pp. 1–9.

[97] H. Zhao, J. Shi, X. Qi, X. Wang, and J. Jia, “Pyramid scene parsing
network,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jul. 2017, pp. 2881–2890.

[98] L.-C. Chen, G. Papandreou, F. Schroff, and H. Adam, “Rethinking atrous
convolution for semantic image segmentation,” 2017, arXiv:1706.05587.

Zhicheng Zhang (Graduate Student Member, IEEE)
is currently pursuing the Ph.D. degree with the
College of Computer Science, Nankai University,
Tianjin, China.

His current research interests include deep learning
and computer vision, with an emphasis on video
affective computing and video tracking.

Song Chen received the master’s degree from
Nankai University, Tianjin, China, in 2022.

His current research interests include image under-
standing, including object detection and object
segmentation.

Zichuan Wang received the bachelor’s degree in
mathematics from Nankai University, Tianjin, China,
in 2020, and the master’s degree in computer sci-
ence from Brown University, Providence, RI, USA,
in 2023.

His research interests include deep learning and
computer graphics.

Jufeng Yang (Member, IEEE) received the Ph.D.
degree from Nankai University, Tianjin, China,
in 2009.

He was a Visiting Scholar with the Vision and
Learning Laboratory, University of California at
Merced, Merced, CA, USA, from 2015 to 2016.
He is currently a full Professor with the Depart-
ment of Computer Science, Nankai University.
His research interests include computer vision and
machine learning.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on April 09,2023 at 07:16:03 UTC from IEEE Xplore. Restrictions apply.

