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Abstract

Tracking both location and pose of multiple planar ob-
jects (MPOT) is of great signi cance to numerous real-
world applications. The greater degree-of-freedom of pla-
nar objects compared with common objects makes MPOT
far more challenging than well-studied object tracking, es-
pecially when occlusion occurs. To address this challeng- (a) Image of " frame
ing task, we are inspired by amodal perception that humans
jointly track visible and invisible parts of the target, and
propose a tracking framework that uni es appearance per-
ception and occlusion reasoning. Speci cally, we present a
dual-branch network to track the visible part of planar ob-
jects, including vertexes and mask. Then, we develop an oc- (b) Different tracking tasks  (c) Trackirjg" frame
F:Iusion area Iocalizat.ion strategy to infer the invisible part, Figure 1: Comparison with other vision tasks. Given an im-

i.e., the occluded region, followed by a two-stream attention gge (a), we present the ground truth for different tasks in (b). The
network nally re ning the prediction. To alleviate the lack  corresponding Degree-of-Freedom (DoF) is reported at the bottom
of data in this eld, we build the rst large-scale benchmark and the details are listed on the right side of each task. In (c), we
dataset, namely MPOT-3K. It consists of 3,717 planar ob- show the tracking results for box-based taskg ( VOT, RVOT),
jects from 356 videos and contains 148,896 frames togethemmask-based taske.g, VOS), and POT, which can nd the oc-
with 687,417 annotations. The collected planar objects cluded regions (marked by the red line area) and provide pixel-to-
have 9 motion patterns and the videos are shot in 6 types ofPixel matching correspondence (colored points across frames).
indoor and outdoor scenes. Extensive experiments demon-

strate the superiority of our proposed method on the newly
developed MPOT-3K as well as other two popular single
planar object tracking datasetsThe code and MPOT-3K
dataset are released on https://zzcheng.top/MRPOT

faces of an object [1] or planes from various objects [27].
It has attracted more and more attention attributed to vari-
ous applications in augmented reality [57, ], video edit-
ing [4, 20, 30], and robot navigation [92].

MPOT is closely related to well-known computer vision
. tasks in RGB tracking [32] (see Tab. 1). Both tasks involve
1. Introduction tracking the target across subsequent frames of a video us-

Tracking multiple planar objects (MPOT) is a funda- @n_g the ground trut_h p_rovided in the initial frame. However,
mental task in computer vision. It aims to explore the mo- itiS more challenging in two aspects. 1) Tracking planar ob-
tion of planar objects, tracking both the location and pose of IECtS iS of greater Degree-of-Freedom (DoF). As shown in
multiple targets simultaneously [40, 43, 56]. The planar ob- Fig. 1(b), MPOT tracks both the pose and location of the tar-
ject is de ned as a plane belonging to a speci ¢ body [25] 9€b which is described by an arbitrary quadrangée, (four
(e.g, box, building, or wall) in the form of four ordered Independent vertexes;y1; Xz; Y2; X3;Y3; X4; Ya), whose
vertexes [43, 70]. With the help of MPOT, we can track tar- DoF is 8 [44]). In contrast, it only needs to predict the

gets when multiple planar objects existg, different sur- ~ POsition and size of an obje¢k;y; w; h) in video object
tracking (VOT), and Rotated VOT (RVOT) additionally re-

t Corresponding author. quires the rotation angle. Even compared with video object




Table 1:The comparison of MPOT with other video-related tasks.We compare MPOT with ve RGB tracking tasks and four tasks
with auxiliary modality information. The count of DoF comes from [44].

. Object Scenario
Modality Task
Object category Object selection Multiple objects Pixel correspondence DoF  Occlusion

MOT [83] Limited, usually pedestrians or vehicles Detected Y N 4 Y
MOTS [75] Limited, usually pedestrians or vehicles Detected Y N N/A N
VOS [66] Arbitrary User-speci ed in the rst frame N N N/A N

RGB VOT [21] Arbitrary User-speci ed in the rst frame N N 4 Y
RVOT [32] Arbitrary User-speci ed in the rst frame N N 5 Y
MPOT Arbitrary User-speci ed in the rst frame Y Y 8 Y
RGBDT [91] Arbitrary User-speci ed in the rst frame Y N 4 Y

RGB+Depth 6DOP [50] Limited by training set Detected Y Y 6 Y
6DPT [81] Arbitrary User-speci ed in the rst frame N Y 6 Y
3dOD [35] Limited by training set Detected Y N 7 Y

RGB+LIDAR 3dMOT [64] Limited, usually vehicles Detected M N i M

segmentation (VOS), an alternative that introduces maskslocalization strategy to indicate the occluded part, by storing
at the pixel level, MPOT is a more challenging task. Be- the movement of each planar objecce, historicalH). To
cause MPOT provides the matched correspondence for eache speci c, we factorize the sensitive homography matrix,
pixel within the object region across frames [6€]d, col- which describes the relative movement of planar objects,
ored points in Fig. 1(a)&(c)), which makes it possible for into parameters of transition, rotation, and pose. Finally,
applications that require positional information like texture with the prediction from the mentioned stages, we propose
mapping [24]. Nevertheless, VOS that tracks the target areaa two-stream self-attention network to jointly re ne the pre-
instead of per-pixel location can hardly achieve it. 2) Oc- dicted planar objects.

clusion is another challenge that comes with MPOT. Not  Besides, since there is no available dataset in this eld,
only the one in POT that manually occludes the camera,we build a large-scale benchmark dataset, namely MPOT-
MPOT but introduces the occlusion raised by the layered 3K. Speci cally, we shoot 356 videos with 3,717 planar
position of multiple targets relative to the camera [77, 96] objects and 687,417 annotations. The videos are collected
(see Fig. 1(c)). Besides, the occlusion is more complex thanunder 9 motion patterns, where the relative movement and
the ones in multiple object tracking (MOT). As discussed occlusion are also included to simulate the real-world scene.
above, when occlusion occurs, MPOT estimates the pixel The contributions of this paper are two-fold: 1) We col-
correspondence controlled by homography maktixq3], lect and annotate the rst large-scale benchmark dataset
which tends to be sensitive and have a high condition num-for MPOT, where planar objects are diversely collected ex-
ber that can reach up to 5¢25]. This means that a tiny  pelling bias. Our dataset will be released and boost research
movement of the invisible part is extremely difcult to in this eld. 2) We propose a tracking framework with uni-
track. ed motion and appearance models, which can accurately

To address the aforementioned limitations, our work Predict the pose and location of planar objects. Extensive
draws the inspiration that humans consolidate the visible to-experiments demonstrate the superiority of PRTrack against
gether with invisible parts of the target for tracking [96]. We State-of-the-art approaches.
propose a tracking framework comprised of procedures for
appearancéerception and occlusioReasoning, namely 2. Related Work
PRTrack. To track high DoF planar objects, we reformu-
late the problem of estimating homography matrxas
predicting the mask and ordered vertexes for each planaBenchmark Datasets.Current works focus on single pla-
object. With the high-dimensional mask, we can accurately nar object tracking and propose several POT datasets [19,
locate the target area at the pixel level. Besides, the ordered!2, 43,45, 70, 86]. Metaio [45] is the rst dataset collected
vertexes provide per-pixel correspondence across frames fon the lab and the videos are collected by a monitored cam-
tracking the pose of planar objects. Therefore, in the stageera. Similarly, TMT [70] also shoots videos from the lab,
of appearance perception, we propose a dual branch netwhere the annotations are automatically generated by ag-
work to predict the ordered vertexes and masks of planargregating the results of three planar object trackers. Due
objects based on the historical visible information. For ver- to the laboratory setting of the collection, videos in these
texes, we design an encoder with shifted sampling strat-datasets have similar backgrounds. Thus, POT210 [43] col-
egy based on the constraint that the vertexes always havéects video data in the wild under seven motion patterns and
a clockwise order. For mask, we aggregate the probability encourages the diversity of the recorded videos with com-
of multiple planar objects with a multi-layered layout, that plex backgrounds. However, existing benchmarks are insuf-
is, a stack of occluders and occludees. Further, to solve thecient to mimic real-world settings where multiple targets
cases of complex occlusion, we develop an occlusion areaexist. Therefore, our work extends the task into MPOT that

2.1. Planar Object Tracking



Table 2: Statistics of tracking datasets.“l.” and “O.” indicate
indoor and outdoor, respectively. “#" denotes “the number of”.
UCSBTMT POIC POT210 POT280 MOT16

Benchmark wol 7o [l 3] [42] 58] MPOT-3K
# Scenes 1 1 20 30 40 14 42

# Videos 96 100 20 210 280 14 356

# Targets 96 100 20 210 280 1,27 3,717
# Annotations K - 23K 53K 70K 29X 687K
Scene Category l. l. 1.&O. 1.&O. 1.&0. O. 1.&0.
Multiple Objects % % % % % ! !

simultaneously tracks multiple planar objects which can be _. ) . o

applied in real-world applications like AR, robots, and art, —'gure 2: Stafistics of occlusion in MPOT-3K. (a) shows the
frequency of occlusion in six types of scenes, in which the number

Methods. POT trackers can be classi ed into region-based, on the left indicates the number of planar objects being occluded

keypoint-based, and hybrid methods. Region-based ap-and the one in shadow represents the corresponding proportion.

proaches [2, 3,9, 17, 34, 68] focus on the whole planar re-(b) illustrates the number of occlusions per video as well as the

gion and estimate perspective transformation by closing uptemporal length per occlusion.

the template and the warped image. Keypoint-based meth-

ods [22,61,63,79, ] describe a planar object by the de-3. The MPOT-3K Dataset

tected keypoints [54,69] and associate objects across frames _ ) o o

by computing the similarity between keypoints. As for hy- ~ MPOT is being less explored and limited by existing
b”d methodS, previous Works [ , 9, , ] exp'oit the ro- datasets designed to Single planar ObjeCt tI’aCking. In this

bust feature descriptors for searching the optimal match-Work, we construct the dataset MPOT-3K for introducing
ing. A representative method [] leverage gradient-basedmultiple targets. To the best of our knowledge, MPOT-
feature as criterion. As progress is made into the deep learn3K is the rst large-scale dataset for the challenging task
ing era [37,82], CLKN [7] integrates deep features into the Of MPOT. This will help facilitate future research in com-

Lucas-Kanade algorithm for improving matching quality. ~ Puter vision (augmented reality, safety surveillance), robot
(navigation, manipulation), and art (video editing).

2.2. Visual Tracking 3.1. Data Collecting

Single Object Tracking. It aims to locate and track a sin- Initially, we shoot 840 videos involving the motion of
gle target in a video [39, 48], which can be roughly grouped static and moving planar objects. For the static planar ob-
into box-based tracking [18, 55, 93] and mask-based track-jects, we design six motion patternise(, far-near move-

ing [41,47,60]. SiamFC [5] adopts the correlation layer to ment, in-plane rotation, out-plane rotation, in-plane move-
search the location which is described by the axis-alignedment, motion blur, camera occlusion) by controlling the
bounding box. Further, SiamMask [78] introduces rotation movements of camera as common practices [43,86]. For the
to describe the motion and predicts the object mask with moving planar objects, we consider the occlusions and rel-
the bounding box simultaneously. Meanwhile, mask-basedative movements among multiple planar objects and design
tracking focuses on the accurate location of the targets.two motion patternsif., moving objects, moving occlu-
STM [62] addresses the problem of appearance changesion). Besides, an unconstrained motion pattern is consid-
leading to satisfactory results. Recently, PoST [60] exploresered to further combine the above motion patterns. Accord-

the relationship between the mask and contour, buildinging to [87,103], we record diverse videos from six types of
constraints for predicting the polygonal mask. indoor and outdoor scenes, including library, house, gallery,
Multiple Object Tracking. Existing works [14, 58] pro-  Puilding, street, and village.

pose to track multiple objects of human interests simulta-
neously, with the assumption that all targets belong to a list
of prede ned classes [10, 11, 26, 36, 51, 90, , . A MPOT-3K is annotated by seven well-trained annota-
large number of methods [49, 65,80, 85, 99] are proposed totors. Following [43], we adopt a semi-automatic annota-
address the task. With the class assumption, they utilize ob+tion scheme. First, the annotator labels one frame every ve
ject detectors to generate candidates in the manner of axisframes. Then, the annotated label is propagated to other
aligned bounding boxes. Then the candidates are associatednannotated frames by linear interpolation. Finally, the an-
into trajectories. While both MPOT and MOT track multi- notator corrects the propagated label. During annotation,
ple targets at the same time, the former faces more chal-we obey the following rules. First, we de ne what planar
lenges since it handles arbitrary planar objects with greaterobject is to be annotated according to [43, 70, 86]. The pla-
DoF, as well as covers unrestricted classes [43]. nar object should be easily presented by four ordered ver-

3.2. Data Annotation
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Figure 3:The pipeline of our method. Our tracking framework is divided into three stages. First, in appearance perception, we track the
visible part of multiple planar objects via a dual-branch network, as coarse output. For the next stage of occlusion reasoning, the occlusion

area is localized and then fed into a two-stream self-attention network for re ning the predicted target. Finally, the memory pool module
restores the high-con dent tracked targets.

texes. To ensure that the criteria for selecting plane objects4. Methodology
are consistent, we ask all the annotators to vote for Itering
out inconsistent objects [52]. Second, we start annotating
when the planar object is completely in view and end when . .
the object has been fully occluded or out of view. Third, we occlusion reasoning network. The memory pool module

annotate the spatial position of the planar object accordingl(sec' 4%) retsttorest thg p_:jev(;obus pre(_j|ct|(|)n;s ankd de?:pelstthe
to two principles: 1) We annotate the planar object which ow-con denttargets. uided by previously tracked targets,

has four apparent lines, since the point is localized by in- the aﬂpear_aECﬁ percephonfnetworlg (Slec. 4.3t)).pred|_clz_ths mask
ferring the intersection lines [67]. 2) We maintain the order together with the vertexes for each planar object. The oc-

of vertexes across video frames for pixel correspondence.CIUSIon reasoning network (Sec. 4.4) further takes all the

Combining these principles, we can locate the planar object_tra(_:ked targets an_d corresponding occlu_5|on area, which is
with four independent vertexesd,, a quadrangle). indicated by the difference between motion-guided results

among multiple targets and the predicted one.

3.3. Statistics 4.1. Problem Reformulation

PRTrack consists of three main components (See Fig. 3):
memory pool module, appearance perception network, and

After collecting and labeling, we yield a large-scale Assume multiple planar objects exists in an RGB video
dataset MPOT-3K, where we obtain 356 videos with 3,717 where they are not from the training set, nor have detection
planar objects from 42 scenes. The number of planar ob-results. Given the user-selected ones in the initial frame, the
jects per video averages 10.44 and can reach 74 at mosibjective is to estimate their position change relative to the
MPOT-3K is divided into training, validation, and test sets beginning,i.e., homography matrix, with which the pose
in a proportion of 80:5:15. The split is performed at the change of targets can be obtained [56]. As shown in Fig. 4,
scene level to ensure there's no overlap among splits. Henceve reformulate the tracking task as predicting the masks of
the dataset avoids leakage since both the target and scene difie quadranglé 2 R® " and the heatmap of four or-

the test set are expelled during training. dered vertexe® 2 RO 4™ whereO is the number of
As shown in Tab. 2, we compare MPOT-3K with six planar objects in the current frame. The layered masks rep-
datasets, which come from POT [8, 19, 42, 43, 70] and resent the location of multiple planar objects [94] and the

MOT [58] tasks. MPOT-3K contains over 9.8 times more Vvertexes are used to track the pose of planar objects [56].
annotations and 13.2 times more targets in all video frames
than the largest POT dataset POT280. The number of4'2' Memory Pool module

targets is almost 3 times of the popular MOT16 dataset. From the viewpoint of human perception, one person
Another strength of MPOT-3K lies in its diversity, which tracks the targets by memorizing their historical appearance
covers 9 motion patterns and 6 types of scenes. Besidesand trajectory [59]. Inspired by this, we leverage the images
MPOT-3K introduces more complex occlusions. As shown and predictions in previous T frames as guidance to track
in Fig. 2(a), we observe that occlusion occurs in all the planar objects in the current one. For the previous frames,
scenes, where 39.9% of planar objects are occluded on avwe record previously predicted heatmaps of ordered ver-
erage. Fig. 2(b) further illustrates that there are 3.6 occlu-texesP, 2 RT ™ masksVl, 2 RT ™ and the images
sions happening in a video on average and each occlusion, 2 RT 3™ for the o planar object. The memory pool
lasts 9.56 seconds. f(Po;Mo;l o)gsz1 stores the tracked N planar objects.



Figure 5: lllustration of our proposed vertex encoder. Given
Figure 4:lllustration of the reformulated form of MPOT. We the vertex heatmaps, we random sample them by a cyclic shift
predict heatmaps of four ordered vertexes and the mask for eactoperation, following a clockwise order and with an offsetrof
planar object. The stacked masks are built in a layered structureNote that PSB, as a counterpart, predicts the vertexes via a cyclic
and are responsible for the occluders and occludees. shift function with negative .

However, due to the challenge of accurately tracking the order between four vertexes, we introduce the cosine
multiple planar objects, the error accumulation [46] occurs positional embedding [74] and add it to the vertex represen-
because of memorizing incorrect predictions. To avoid this tation. The positional embeddirigm, 2 R- N contains
issue, we lter out the low-con dent predictions. Given the the N-d embeddings corresponding to the order information

current frame, PRTrack predicts the vertef% 2 R4 for the features of L vertexes. The feature of ordered ver-
and mask¥ © 2 R™ for the d" tracked planar object. We texes is then extracted by7a 7 convolution to capture
compute the con dence of the mask and vertexes as long-range spatial interaction between vertexes.
o on O Plane Structure Branch (PSB).Given the shifted feature
Meont = min (fmax (M )%)=1 ); (1) map of vertexes from the decoderla 1 convolution is
Peont = min (fmax(P°)g,_, ) attached with the sigmoid function to output the heatmap of

The predictions with the con dences surpassing the thresh-the vertexes. The shifted vertex heatmaps are then aligned
old are restored in the memory pool module. The reuse gatewith the shifted input in Equ. 2 by using the reversed cyclic

is only applied during testing. shift operationshift (; r). Finally, we get the heatmaps
) of o planar objecP® 2 R"W by upsampling to the same
4.3. Appearance Perception resolution as the original image.

Our appearance perception network is built on top of Segmentation Prior Branch (SPB).The _mask can accu-
the encoder-decoder architecture [62], with a backbone off@tely locate the planar object at the pixel level and cap-

ResNet50. For the current frame. we extract appearancéure the relative movement between objects such as occlu-
featuref o,y 2 RCHW from an image, wheréi; W; C de- sion [55, 78]. Therefore, we utilizel 1 convolution with

notes the width, height, and the number of channels of thethe soft.max functiqn alongside the forgground/background
feature. For previous frames, we extract features from ver-dimension. Following [62], The probability of background
texes, masks, and images, and sum the three features d8bkg @nd each foreground objett, are obtained by aggre-
foe 2 RT CHW  The current image feature and previ- 92ating the output of modébgits 2 RO "W as

ous target features are fed into the encoder network to yield m. = p exp(logits,) — Y 1 my): (3)
appearance featuré$,, 2 RCHW for o planar object. °7 70 expllogits) - o/

The plane structure branch and segmentation prior branc

nally predict the coarse results of vertexes and masks.
Vertex Encoder with Shifted Sampling Strategy. Con-
sidering the vertexes of the planar object provide the pixel
correspondence across frames, each vertex is independeit.4, Occlusion Reasoning
against others, thus they are organized in sequential or-
der [47]. Therefore, we design an encoder with shifted sam-
pling strategy to leverage the characteristic of vertekes (
the clockwise order), as the feature extractor. As shown i ) ) i ) J _
Fig. 5, a random cyclic shift functioshift (;+r) is rst multiple object tracking, reasoning the occlusion by motion

applied to build the connection between the vertex heatmapaS been veri ed effective [97, 95], where a motion strat-
P, 2 R"W and its neighbors by shuf ing position as egy is adopted to predict the future location of the target
based on the historical trajectory. Inspired by this, we rst

shift (P;+1) = [Pas nyoers i Penwcl  (2) develop a homography-guided strategy that locates the oc-
whereL is the number of vertexes in the planar object and clusion area and correct features from previous frames ge-
r 2 f0;1;2;3gis a random numbe is the mod opera- ometrically. We factorize the homography matrix into mo-
tion. Then, we apply 7 convolutions [25] to extract the tion parameters that describe the common transformations,
features of four ordered vertexes, separately. For modelingto estimate the sensitive homography matrix (as discussed

r‘|:inally, the probability segmentation maskadf planar ob-
jectM° 2 RMW are produced after softmax. The back-
ground probability map is attached in the last channel.

With the above coarse output perceiving from the visible
part, we move to the next stage of reasoning the occluded
npart by the motion of planar objectse(, homography). In



in Sec. 1). Then, for tracking both visible and invisible parts the interactions between appearance and motion, we feed
of planar objects, we design a two-stream self-attention net-both featuges into MHSA as

work that takes both the appearance features of the current X =Concat( ha;::ihy)
frame and the motion-guided features of the previous frame hi = afw >
) . FWRIFWKT (6)
to re ne the predicted planar object. 5 a; = softmax( ;Aiil)v
dk

Occlusion Area Localization Strategy. To avoid the sen-

sitivity problem discussed in Sec. 1, we rst introduce the f- = Concat(fm;:fa)

geometric de nition of homography matrbt 2 R3 3[23], whereW 2; WK ; andW Y are the matrixes. We then
and factorize it into similarity transformatidt® and resid-  adopt MLP to extract representations for motion fea¥ge
ual oneH , with eight stable motion parametersiof = and appearance featuxe,, respectively. For assembling,
(titys 5 oK 1 k22; V1;V2) as - 3 we integrate both features guided by indicat®r
cos sin tx ki k2 O Focc = Fens(F (Xa); Xm); (7)
H=H°H =4 sin cos ty,540 L 05; whereFens andF arel 1 convolution layerF con-
0 0 1 vive 1 catenates the occlusion indicator with input feature as guid-
) ance. Finally, given the mask and vertex heatmaps af'the

wheret,;ty are the transition offset, and denote the  ,c¢jded planar object, we feed the features into the dual-

change of scale and angle, akg, kz;vi;v, control the  ranch network used in the stage of appearance perception
parameters of matrix{ p Here, the motion parameters again and obtain the re ned vertexi®8 and mask? °.
can be computed by solving a transcendental equation with

eight variants. The location parameters can be written as
hi = (X1;Y1; X2 Y2; X3, Y3; X4; Ya).

Speci cally, the location parameters and homography 5.1. Evaluation Metrics
are obtained from the coarse output of appearance percep- 14 avaluate methods on MPOT, following [15], we uti-

tion, where we apply the Argmax function on heatmaps 10 |i,a the CLEAR metric [52] to complement the POT met-

get the coordinates of vertexes and compute the homogragics Note that existing POT metrics estimate the difference

phy matrix between the coordinates from the current frame poveen ground truth and prediction in a pairwise manner
and the previous one. Then, the factorized homography; o '1_phox to 1-box). But it is not suitable for MPOT, since
hp and location parametets are fed into the Kalman Fil- ¢ nymper of predictions and ground truths are not always
ter [29] and yield the corrected onég; . Finally, ho-  equal. Therefore, we match the set of ground tGh and
mography matriXd © for theo planar object in the current predictionP; by bipartite matching [33]. Sequentially, we

5. Experiment

frame can be obtained. compute the difference of the matched pair by well-known
Given the predicted homograhpy, the mask from previ- POT distance AlignmentError [43,45,70] as

ous framel‘?lg can be warped [3] by the perspective trans- © n L (p; g,—)z

formationwarp(® 2; A°). To locate occlusion area, the Ea (p;0) = ]f; (8)

intuition is that the heatmap inferred by historical motion wherep andg are the quadrangle of the prediction and
is robust to the occlusion on appearance. Meanwhile, theground truth. Then, the prediction and ground truth are split
heatmap predicted based on appearance can accurately ldénto trackedT !, true positiveT P!, false negativé N ', and
cate the planar objects in the current frame. As a result, wefalse positiveF P!, according to distance We set as 50

indicate the area cgz occlusion as in our experiment due to the degree of challenge.
1 o ey ) ,
o- p i kwarp(IVI,',; A M% (5) In POT, Precision®r ) is the commonly used metric

based on the alignment error [43]. To complement the met-

wherek k is the distance function computed per pixel and fics, we report RecalRc ) to consider the cases of not be-

. judges the mask con dence f planar object ing tracked. Furthermore, we propose Multiple Planar Ob-
I .

Motion Reasoning Network. For reasoning the visible ject Tracking D#,stTan(igL‘( ) as _

and invisible parts of planar objects, we leverage the oc- D = _ =1 t13TPha2T Ea (t0;0) 9)

clusion indicator ° as guidance, where the featufes, i tT_l iTPY '

from the current frame are re ned, together with the warped Naturally, we propose the Multiple Planar Object Tracking

featurewarp(f 2; A °) from the previous frame. We denote Accuracy Acc a’based OrEA. as.

these two features dg andf ,, respectively. The features T IFNYj+ jFPYj + jIDSW Y
. X . S _ t=1 .

are rst attened alongside spatial dimensidn;f, 2 Acc =1 P5+— - ; (10)

R¢ HW = Then, we develop a multi-head self-attention 3 =21 IGTY

(MHSA) mechanism [31] for extracting occlusion-aware wherelDSW ! is the set of the identity switch [58] under

features. For learning joint representation and encouragingthe threshold in t"" frame, ang | indicates the mod oper-




Table 3: Comparison of two groups of methods on MPOT-3K.The results on ve metrics including Success Rate, Multiple Planar
Object Tracking Accuracy, Multiple Planar Object Tracking Distance, Precision, Recall, and Speed are rép@tjatbnotes that the
higher (lower) the score, the method performs beBetd and underlinéndicate the highest and second-highest performance, respectively.

Methods Traditional Deep

Motion Patterns Metrics CMT NCC CCRE M GOP Gracker STM PoST LISRD SMask SRPN+SPoint SOS GIFT HDN  Ours
611 [71]  [vel [71 81 [791  [62] [60]  [64] [78] [38] [16] [73] [53] @ [99]

So:g " 09.50 00.19 09.99 26.70 56.03 67.92 09.07 33.52 63.43 64.04 67.23 7182 7291 75.86 82.51

Acc " 64.27 6195 34.34 37.82 62.28 88.38 52.05 39.55 7239 73.29 7537 71.17 70.06 72.99 7¢ 94.59
Overall Pr " 37.05 03.64 14.12 23.57 45.25 85.67 25.64 25.02 56.23 58.38 60.70 54.58 53.23 56.41 6% 92.85
Rc " 10.24 00.55 19.08 38.60 62.72 78.25 23.07 40.74 80.40 69.55 74.45 8125 &I 82.56 90.78

D # 1230 4215 17.27 08.68 06.37 05.23 18.79 22.71 06.93 17.06 16.77 07.67 07.76 07.80 07 05.07
So:g " 11.34 00.00 10.69 26.47 55.85 63.68 08.78 18.17 73.79 63.29 70.62 7091 73.42 72.92 80.29

Acc " 67.25 62.78 56.21 68.10 81.41 92.93 55.49 48.04 91.74 81.46 83.27 89.92 92.28 89.74 8t 93.16
Moving Occlusion  Pr " 53.48 4.92 3356 51.82 70.05 76.30 29.63 25.45 86.32.57 7594 84.73 84.35 84.21 82.( 90.95
Rc " 13.47 00.64 32.01 61.57 77.30 81.98 24.37 2898 80.70 67.62 7297 8539 85.03 8B.86 88.27

D # 06.31 4214 21.29 08.79 04.13 07.92 16.54 27.26 06.41 1557 1429 06.06 06.17 06.08 05.34

So:g " 09.34 00.69 11.23 24.29 52.21 61.58 08.09 3552 67.79 6295 6549 65.50 @WIR 70.09 79.12
Acc " 69.22 63.86 40.78 47.41 68.96 92.54 53.77 41.96 76.88 80.33 82.72 78.44 69.29 78.59 81 94.29
Moving Objects Pr " 60.28 17.10 19.24 32.57 52.50 90.48 28.33 27.13 60.87 68.62 72.09 67.75 52.41 6797 6i 92.27
Rc " 2287 219 2427 5395 7251 56.77 25.28 43.96 87.73 75.75 79.22 67.66 8W&O® 84.43 90.44
D # 1271 4321 1766 06.85 05.7D4.11 21.77 19.93 05.15 14.92 1548 04.21 0453 04.05.63 05.46

So:g " 14.61 00.00 13.31 41.79 63.59 66.41 13.80 40.21 85.46 62.46 59.40 88.85 88.28 88.03 92.46

Acc " 6354 6193 34.28 40.28 61.72 87.98 51.72 37.15 74.06 61.66 68.71 7218 71.90 72.10 8¢ 95.85
Camera Occlusion Pr " 36.89 00.38 18.42 27.84 45.04 88.24 2459 25.31 56.76 44.83 5231 54.67 54.42 5460 7: 95.84
Rc " 13.19 00.06 28.32 49.74 67.38 73.75 21.70 4537 84.32 64.86 70.75 87.57 @&BED 84.52 91.53

D # 10.31 29.38 20.10 07.71 06.73 04.63 25.05 20.08 04.82 1446 14.45 04.81 ®UEB 05.18 04.59
Speed" 00.58 01.98 00.31 01.25 01.00 03.14 35.44 11.90 08.63 _31.5210.87 09.32 1251 26.62 16.3 12.64

ation. To fairly compare along with the trajectory level, we 5.3. Results on MPOT-3K

adopt the success rat® () with the distance threshold as .
We compare our PRTrack with the other fteen trackers

J i Py T on MPOT-3K, which contains six traditional POT trackers,
S ;C="fip 2 |JPL > g (11) four deep-based generic object trackers, and ve deep-based
i t=1 IGTdJ planar object trackers. Tab. 3 reports the overall perfor-
wherel is the set of planar objects in the video. mance as well as the one in the challenging situations of

moving occlusion, moving objects, and camera occlusion.
Deep vs. Traditional Trackers. We can observe that the
We compare our model with fteen representative meth- deep-based trackers have increased by 82.6% on average,
ods. These methods are implemented by of cial code or on ve metrics for overall performance. This is because
open-source libraries [6,72]. We run evaluated single objectdeep-based trackers avoid taking some assumptions under
trackers multiple times for different planar objects. And we the laboratory environment, such as the invariance to illu-
equip them with the data association strategy based on [12]mination and appearance change. Note that Gracker per-
for integrating each single object tracker into tracking mul- forms best in traditional trackers and achieves competitive
tiple targets online. Besides, we additionally give the refer- performance with the deep-based tracker group. However,
ence frames of ground truth if the single object trackers fail since MPOT-3K has many small planar objects, it can not
to track. Different from other box-based trackers, mask- extract suf cient information, thus resulting in suboptimal
based trackerse(g, STM) directly outputs the mask. Thus, performancei(e., 10.3% degradation in comparison with
we use a rotated box estimator [38] to transfer the mask.ours). In terms of deep-based trackers, STM predicts seg-
We implement PRTrack using two RTX3090 GPUs. In the mentation masks at the pixel level while ignoring the order
training stage, we use data augmentations, including ip, of vertexes. Thus, it results in inferior performance, where
pepper noise, rotation, contrast jittering, and perspectiveonly 9.0% of targets are correctly tracked.
transformation. We adopt a data sampling strategy follow- Planar Object Trackers vs. Generic Object Trackers.
ing [41]. We adopt Smooth L1 loss and Cross-Entropy loss Planar object trackers achieve higher performance (58.9%
for optimizing the predicted vertex heatmaps and masks.improvement) against generic object trackers, including
Similar to [62], we pretrain SPB on YouTubeVOS [89] and SRPN+, SMask, STM, and PoST. A predominant reason
DAVIS [66] datasets. During inference, we use the ordered is that the generic trackers are subject to the assumption
vertexes to build the planar objects and estimate the homog-of af ne transformation, where only the coarse box estima-
raphy matrix. We set the threshold as 0.9 in the reuse gatetion is required. Therefore, a powerful planar object tracker
by grid search and setin Equ. 2 as 0 during inference. should be developed in this eld.

5.2. Implementation Details



Table 4: Ablation study of components and their variants of
PRTrack on the validation split of MPOT-3K. The lines with
background indicate the module-level ablation study. Here AP,
OR, and RT are short of appearance perception, occlusion reason-
ing, and memory pool. SE and Fac denote the shifted encoder and
factorized homography matrix. Msk represents the plane struc-
ture branch with mask information. Here,,” ', and } ' are the
fusion strategy (Fus), representing concatenation, attention-based,
and indicator-based. Gat indicates the reuse gate.

AP OR RT Metrics

(a) POT210 (b) POT280 Id ‘ SE Msk‘ Fac FuJ Gat‘ Sog" Acc "Pr* Rc" D #
- X | 4529 68.01 46.75 46.71 19.56
- X X | 63.76 86.82 82.36 76.96 15.40

®| X X 75.82 91.08 86.22 82.96 1257

T lx X X | 78.20 91.43 87.19 86.42 09.95

X X | X X | X | 7753 9146 9041 86.25 10.43
+ | X X | X X | X |7899 9141 8807 8587 09.12
2 X X X} | X | 79.24 9150 88.10 86.13 08.95
2 X | X X}| X | 7638 9056 8858 82.34 10.59

Clxox [ x o ox! 80.44 92.48 89.67 87.54 07.38

(c) Challenging factors X X | x X[ X | 8058 9275 90.00 88.03 06.39

Figure 6:Comparison on POT210 and POT280The averaged

Precision on two datasets with different thresholds are reported in\yith the occlusion reasoning module. Then we investigate
(a) and (b), respectively. (c) further shows the performance under

seven challenging factors. The data is extracted from [95]. the variants of each module. For appearance perception: we
study how to leverage the order of vertexes. The boosting
of 16.3% (.e.,, - &® and?® &) veri es that the proposed
encoder avoids learning position bias, where the rst ver-
lIex commonly comes from the top-left area. For occlusion
reasoning, we nd the solution to unify the appearance fea-
ture and motion feature. We rst conduct experiments on
ealternative solutions of fusion.¢., ° &+ &), where our
strategy achieves the best performance. Because the oc-
clusion indicator provides the change of image against oc-
5.4. Results on POT210 and POT280 clusion and joint embedding helps to introduce interaction
] ) N between features. We also identify the effectiveness of ho-

To verify the effectiveness o'f PRTrack on the traditional mography factorization via the comparison2o&t , with
POT task, we conduct experiments on the POT210 andyp, ayerage boosting of 7.2%. For memory pool, we investi-
POT280 datasets, z_ind compare PRTrack with eleven POTgate the accumulated error. With a gain of 4.4% (®&
methods as shown in Fig. 6. Note that we do not ne-tune 5,4~ &), we believe the proposed reuse gate can avoid

PRTrack on these two datasets, again verifying the generyhe error derived from restoring the predictions.
alization ability of PRTrack towards unseen scenes. Fol-

lowing [95], the averaged Precision is employed to evaluate §. Conclusion

all the methods. As the distance threshBlg increases,

the precision tends to be stable whegp > 10. We notice In this paper, we propose a novel method for tracking
that PRTrack achieves competitive performance in compar-multiple planar objects simultaneously. We also build the
ison with advanced algorithms. Besides, PRTrack shows its 'st large-scale benchmark dataset MPOT-3K which con-
Superiority when hand“ng Cha”enging cases such as Occ|u_tains suf cient data, is labeled by eXperienced annotators,

PRTrack vs. SOTA Trackers. PRTrack outperforms other
methods with an average improvement of 6.4%. We also
observe a large gain when there exists relative movemen
among multiple targets. To be speci ¢, when facing chal-
lenging situations like moving objects, moving occlusion,
and camera occlusion, PRTrack achieves a performanc
gain of 16.9% against other advanced algorithms.

sion and motion blur. and covers various scenes. Extensive experiments are con-
ducted on both MPOT3K and the other two single pla-
5.5. Ablation Study nar object tracking datasets. The results demonstrate that

We conduct ablation studies on MPOT-3K in Tab. 4 to PRTrack achieves SOTA performance on both tasks.

explore the effectiveness of each component in PRTrack.7
Our baseline is the appearance perception module, without °
shifted encoder and auxiliary mask. For simplicity, we use This work was supported by the National Key Re-
“i&j” to denote the comparison between tif8 line and the search and Development Program of China Grant (NO.
j ™ line in the rest of this subsection. 2018AAA0100400), Natural Science Foundation of Tian-

We rst perform module-wise ablation studies in the jin, China (NO.20JCJQJC00020), Fundamental Research
highlighted lines, we observe that PRTrack obtains the Funds for the Central Universities, and Supercomputing
largest performance gain of 11.6%e(, ®&" and™ &) Center of Nankai University (NKSC).
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