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Abstract

Tracking both location and pose of multiple planar ob-
jects (MPOT) is of great significance to numerous real-
world applications. The greater degree-of-freedom of pla-
nar objects compared with common objects makes MPOT
far more challenging than well-studied object tracking, es-
pecially when occlusion occurs. To address this challeng-
ing task, we are inspired by amodal perception that humans
jointly track visible and invisible parts of the target, and
propose a tracking framework that unifies appearance per-
ception and occlusion reasoning. Specifically, we present a
dual-branch network to track the visible part of planar ob-
jects, including vertexes and mask. Then, we develop an oc-
clusion area localization strategy to infer the invisible part,
i.e., the occluded region, followed by a two-stream attention
network finally refining the prediction. To alleviate the lack
of data in this field, we build the first large-scale benchmark
dataset, namely MPOT-3K. It consists of 3,717 planar ob-
jects from 356 videos and contains 148,896 frames together
with 687,417 annotations. The collected planar objects
have 9 motion patterns and the videos are shot in 6 types of
indoor and outdoor scenes. Extensive experiments demon-
strate the superiority of our proposed method on the newly
developed MPOT-3K as well as other two popular single
planar object tracking datasets. The code and MPOT-3K
dataset are released on https://zzcheng.top/MPOT.

1. Introduction

Tracking multiple planar objects (MPOT) is a funda-
mental task in computer vision. It aims to explore the mo-
tion of planar objects, tracking both the location and pose of
multiple targets simultaneously [40, 43, 56]. The planar ob-
ject is defined as a plane belonging to a specific body [28]
(e.g., box, building, or wall) in the form of four ordered
vertexes [43, 70]. With the help of MPOT, we can track tar-
gets when multiple planar objects exist, e.g., different sur-
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Figure 1: Comparison with other vision tasks. Given an im-
age (a), we present the ground truth for different tasks in (b). The
corresponding Degree-of-Freedom (DoF) is reported at the bottom
and the details are listed on the right side of each task. In (c), we
show the tracking results for box-based tasks (e.g., VOT, RVOT),
mask-based tasks (e.g., VOS), and POT, which can find the oc-
cluded regions (marked by the red line area) and provide pixel-to-
pixel matching correspondence (colored points across frames).

faces of an object [1] or planes from various objects [27].
It has attracted more and more attention attributed to vari-
ous applications in augmented reality [57, 104], video edit-
ing [4, 20, 30], and robot navigation [92].

MPOT is closely related to well-known computer vision
tasks in RGB tracking [32] (see Tab. 1). Both tasks involve
tracking the target across subsequent frames of a video us-
ing the ground truth provided in the initial frame. However,
it is more challenging in two aspects. 1) Tracking planar ob-
jects is of greater Degree-of-Freedom (DoF). As shown in
Fig. 1(b), MPOT tracks both the pose and location of the tar-
get, which is described by an arbitrary quadrangle (i.e., four
independent vertexes (x1, y1, x2, y2, x3, y3, x4, y4), whose
DoF is 8 [44]). In contrast, it only needs to predict the
position and size of an object (x, y, w, h) in video object
tracking (VOT), and Rotated VOT (RVOT) additionally re-
quires the rotation angle. Even compared with video object



Table 1: The comparison of MPOT with other video-related tasks. We compare MPOT with five RGB tracking tasks and four tasks
with auxiliary modality information. The count of DoF comes from [44].

Modality Task
Object Scenario

Object category Object selection Multiple objects Pixel correspondence DoF Occlusion

RGB

MOT [83] Limited, usually pedestrians or vehicles Detected Y N 4 Y
MOTS [75] Limited, usually pedestrians or vehicles Detected Y N N/A N
VOS [66] Arbitrary User-specified in the first frame N N N/A N
VOT [21] Arbitrary User-specified in the first frame N N 4 Y
RVOT [32] Arbitrary User-specified in the first frame N N 5 Y
MPOT Arbitrary User-specified in the first frame Y Y 8 Y

RGB+Depth
RGBDT [91] Arbitrary User-specified in the first frame Y N 4 Y
6DOP [50] Limited by training set Detected Y Y 6 Y
6DPT [81] Arbitrary User-specified in the first frame N Y 6 Y

RGB+LIDAR 3dOD [35] Limited by training set Detected Y N 7 Y
3dMOT [84] Limited, usually vehicles Detected Y N 7 Y

segmentation (VOS), an alternative that introduces masks
at the pixel level, MPOT is a more challenging task. Be-
cause MPOT provides the matched correspondence for each
pixel within the object region across frames [60] (e.g., col-
ored points in Fig. 1(a)&(c)), which makes it possible for
applications that require positional information like texture
mapping [24]. Nevertheless, VOS that tracks the target area
instead of per-pixel location can hardly achieve it. 2) Oc-
clusion is another challenge that comes with MPOT. Not
only the one in POT that manually occludes the camera,
MPOT but introduces the occlusion raised by the layered
position of multiple targets relative to the camera [77, 96]
(see Fig. 1(c)). Besides, the occlusion is more complex than
the ones in multiple object tracking (MOT). As discussed
above, when occlusion occurs, MPOT estimates the pixel
correspondence controlled by homography matrix H [3],
which tends to be sensitive and have a high condition num-
ber that can reach up to 5e7 [95]. This means that a tiny
movement of the invisible part is extremely difficult to
track.

To address the aforementioned limitations, our work
draws the inspiration that humans consolidate the visible to-
gether with invisible parts of the target for tracking [96]. We
propose a tracking framework comprised of procedures for
appearance Perception and occlusion Reasoning, namely
PRTrack. To track high DoF planar objects, we reformu-
late the problem of estimating homography matrix H as
predicting the mask and ordered vertexes for each planar
object. With the high-dimensional mask, we can accurately
locate the target area at the pixel level. Besides, the ordered
vertexes provide per-pixel correspondence across frames for
tracking the pose of planar objects. Therefore, in the stage
of appearance perception, we propose a dual branch net-
work to predict the ordered vertexes and masks of planar
objects based on the historical visible information. For ver-
texes, we design an encoder with shifted sampling strat-
egy based on the constraint that the vertexes always have
a clockwise order. For mask, we aggregate the probability
of multiple planar objects with a multi-layered layout, that
is, a stack of occluders and occludees. Further, to solve the
cases of complex occlusion, we develop an occlusion area

localization strategy to indicate the occluded part, by storing
the movement of each planar object (i.e., historical H). To
be specific, we factorize the sensitive homography matrix,
which describes the relative movement of planar objects,
into parameters of transition, rotation, and pose. Finally,
with the prediction from the mentioned stages, we propose
a two-stream self-attention network to jointly refine the pre-
dicted planar objects.

Besides, since there is no available dataset in this field,
we build a large-scale benchmark dataset, namely MPOT-
3K. Specifically, we shoot 356 videos with 3,717 planar
objects and 687,417 annotations. The videos are collected
under 9 motion patterns, where the relative movement and
occlusion are also included to simulate the real-world scene.

The contributions of this paper are two-fold: 1) We col-
lect and annotate the first large-scale benchmark dataset
for MPOT, where planar objects are diversely collected ex-
pelling bias. Our dataset will be released and boost research
in this field. 2) We propose a tracking framework with uni-
fied motion and appearance models, which can accurately
predict the pose and location of planar objects. Extensive
experiments demonstrate the superiority of PRTrack against
state-of-the-art approaches.

2. Related Work
2.1. Planar Object Tracking

Benchmark Datasets. Current works focus on single pla-
nar object tracking and propose several POT datasets [19,
42, 43, 45, 70, 86]. Metaio [45] is the first dataset collected
in the lab and the videos are collected by a monitored cam-
era. Similarly, TMT [70] also shoots videos from the lab,
where the annotations are automatically generated by ag-
gregating the results of three planar object trackers. Due
to the laboratory setting of the collection, videos in these
datasets have similar backgrounds. Thus, POT210 [43] col-
lects video data in the wild under seven motion patterns and
encourages the diversity of the recorded videos with com-
plex backgrounds. However, existing benchmarks are insuf-
ficient to mimic real-world settings where multiple targets
exist. Therefore, our work extends the task into MPOT that



Table 2: Statistics of tracking datasets. “I.” and “O.” indicate
indoor and outdoor, respectively. “#” denotes “the number of”.

Benchmark UCSB
[19]

TMT
[70]

POIC
[8]

POT210
[43]

POT280
[42]

MOT16
[58] MPOT-3K

# Scenes 1 1 20 30 40 14 42
# Videos 96 100 20 210 280 14 356
# Targets 96 100 20 210 280 1,276 3,717
# Annotations 7K - 23K 53K 70K 292K 687K
Scene Category I. I. I.&O. I.&O. I.&O. O. I.&O.
Multiple Objects % % % % % ! !

simultaneously tracks multiple planar objects which can be
applied in real-world applications like AR, robots, and art.
Methods. POT trackers can be classified into region-based,
keypoint-based, and hybrid methods. Region-based ap-
proaches [2, 3, 9, 17, 34, 68] focus on the whole planar re-
gion and estimate perspective transformation by closing up
the template and the warped image. Keypoint-based meth-
ods [22, 61, 63, 79, 101] describe a planar object by the de-
tected keypoints [54,69] and associate objects across frames
by computing the similarity between keypoints. As for hy-
brid methods, previous works [8, 9, 13, 94] exploit the ro-
bust feature descriptors for searching the optimal match-
ing. A representative method [8] leverage gradient-based
feature as criterion. As progress is made into the deep learn-
ing era [37, 82], CLKN [7] integrates deep features into the
Lucas-Kanade algorithm for improving matching quality.

2.2. Visual Tracking

Single Object Tracking. It aims to locate and track a sin-
gle target in a video [39,48], which can be roughly grouped
into box-based tracking [18, 55, 93] and mask-based track-
ing [41, 47, 60]. SiamFC [5] adopts the correlation layer to
search the location which is described by the axis-aligned
bounding box. Further, SiamMask [78] introduces rotation
to describe the motion and predicts the object mask with
the bounding box simultaneously. Meanwhile, mask-based
tracking focuses on the accurate location of the targets.
STM [62] addresses the problem of appearance change,
leading to satisfactory results. Recently, PoST [60] explores
the relationship between the mask and contour, building
constraints for predicting the polygonal mask.
Multiple Object Tracking. Existing works [14, 58] pro-
pose to track multiple objects of human interests simulta-
neously, with the assumption that all targets belong to a list
of predefined classes [10, 11, 26, 36, 51, 90, 100, 102]. A
large number of methods [49,65,80,85,99] are proposed to
address the task. With the class assumption, they utilize ob-
ject detectors to generate candidates in the manner of axis-
aligned bounding boxes. Then the candidates are associated
into trajectories. While both MPOT and MOT track multi-
ple targets at the same time, the former faces more chal-
lenges since it handles arbitrary planar objects with greater
DoF, as well as covers unrestricted classes [43].

(a) Distribution of occlusion (b) Statistics about occlusion
Length of an occlusion

Number of occlusions in a video

Pr
ob

ab
ili

ty

22.36%121

31.66%114

66.94%324

12535.81%314 43.55%

486 38.51%

(a) Distribution of occlusion (b) Statistics about occlusion
Length of an occlusion

Number of occlusions in a video

Pr
ob

ab
ili

ty

(a) Occurrence of occlusion in different scenes

0.30
0.25
0.20
0.15
0.10
0.05
0.00

0.50
0.40
0.30
0.20
0.10
0.00

(a) Distribution of occlusion (b) Statistics about occlusion
Length of an occlusion

Number of occlusions in a video

Pr
ob

ab
ili

ty

Figure 2: Statistics of occlusion in MPOT-3K. (a) shows the
frequency of occlusion in six types of scenes, in which the number
on the left indicates the number of planar objects being occluded
and the one in shadow represents the corresponding proportion.
(b) illustrates the number of occlusions per video as well as the
temporal length per occlusion.

3. The MPOT-3K Dataset
MPOT is being less explored and limited by existing

datasets designed to single planar object tracking. In this
work, we construct the dataset MPOT-3K for introducing
multiple targets. To the best of our knowledge, MPOT-
3K is the first large-scale dataset for the challenging task
of MPOT. This will help facilitate future research in com-
puter vision (augmented reality, safety surveillance), robot
(navigation, manipulation), and art (video editing).

3.1. Data Collecting

Initially, we shoot 840 videos involving the motion of
static and moving planar objects. For the static planar ob-
jects, we design six motion patterns (i.e., far-near move-
ment, in-plane rotation, out-plane rotation, in-plane move-
ment, motion blur, camera occlusion) by controlling the
movements of camera as common practices [43,86]. For the
moving planar objects, we consider the occlusions and rel-
ative movements among multiple planar objects and design
two motion patterns (i.e., moving objects, moving occlu-
sion). Besides, an unconstrained motion pattern is consid-
ered to further combine the above motion patterns. Accord-
ing to [87, 103], we record diverse videos from six types of
indoor and outdoor scenes, including library, house, gallery,
building, street, and village.

3.2. Data Annotation

MPOT-3K is annotated by seven well-trained annota-
tors. Following [43], we adopt a semi-automatic annota-
tion scheme. First, the annotator labels one frame every five
frames. Then, the annotated label is propagated to other
unannotated frames by linear interpolation. Finally, the an-
notator corrects the propagated label. During annotation,
we obey the following rules. First, we define what planar
object is to be annotated according to [43, 70, 86]. The pla-
nar object should be easily presented by four ordered ver-
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Figure 3: The pipeline of our method. Our tracking framework is divided into three stages. First, in appearance perception, we track the
visible part of multiple planar objects via a dual-branch network, as coarse output. For the next stage of occlusion reasoning, the occlusion
area is localized and then fed into a two-stream self-attention network for refining the predicted target. Finally, the memory pool module
restores the high-confident tracked targets.

texes. To ensure that the criteria for selecting plane objects
are consistent, we ask all the annotators to vote for filtering
out inconsistent objects [52]. Second, we start annotating
when the planar object is completely in view and end when
the object has been fully occluded or out of view. Third, we
annotate the spatial position of the planar object according
to two principles: 1) We annotate the planar object which
has four apparent lines, since the point is localized by in-
ferring the intersection lines [67]. 2) We maintain the order
of vertexes across video frames for pixel correspondence.
Combining these principles, we can locate the planar object
with four independent vertexes (i.e., a quadrangle).

3.3. Statistics

After collecting and labeling, we yield a large-scale
dataset MPOT-3K, where we obtain 356 videos with 3,717
planar objects from 42 scenes. The number of planar ob-
jects per video averages 10.44 and can reach 74 at most.
MPOT-3K is divided into training, validation, and test sets
in a proportion of 80:5:15. The split is performed at the
scene level to ensure there’s no overlap among splits. Hence
the dataset avoids leakage since both the target and scene of
the test set are expelled during training.

As shown in Tab. 2, we compare MPOT-3K with six
datasets, which come from POT [8, 19, 42, 43, 70] and
MOT [58] tasks. MPOT-3K contains over 9.8 times more
annotations and 13.2 times more targets in all video frames
than the largest POT dataset POT280. The number of
targets is almost 3 times of the popular MOT16 dataset.
Another strength of MPOT-3K lies in its diversity, which
covers 9 motion patterns and 6 types of scenes. Besides,
MPOT-3K introduces more complex occlusions. As shown
in Fig. 2(a), we observe that occlusion occurs in all the
scenes, where 39.9% of planar objects are occluded on av-
erage. Fig. 2(b) further illustrates that there are 3.6 occlu-
sions happening in a video on average and each occlusion
lasts 9.56 seconds.

4. Methodology
PRTrack consists of three main components (See Fig. 3):

memory pool module, appearance perception network, and
occlusion reasoning network. The memory pool module
(Sec. 4.2) restores the previous predictions and expels the
low-confident targets. Guided by previously tracked targets,
the appearance perception network (Sec. 4.3) predicts mask
together with the vertexes for each planar object. The oc-
clusion reasoning network (Sec. 4.4) further takes all the
tracked targets and corresponding occlusion area, which is
indicated by the difference between motion-guided results
among multiple targets and the predicted one.

4.1. Problem Reformulation

Assume multiple planar objects exists in an RGB video
where they are not from the training set, nor have detection
results. Given the user-selected ones in the initial frame, the
objective is to estimate their position change relative to the
beginning, i.e., homography matrix, with which the pose
change of targets can be obtained [56]. As shown in Fig. 4,
we reformulate the tracking task as predicting the masks of
the quadrangle M̂ ∈ RO×hw and the heatmap of four or-
dered vertexes P̂ ∈ RO×4hw, where O is the number of
planar objects in the current frame. The layered masks rep-
resent the location of multiple planar objects [94] and the
vertexes are used to track the pose of planar objects [56].

4.2. Memory Pool module

From the viewpoint of human perception, one person
tracks the targets by memorizing their historical appearance
and trajectory [59]. Inspired by this, we leverage the images
and predictions in previous T frames as guidance to track
planar objects in the current one. For the previous frames,
we record previously predicted heatmaps of ordered ver-
texes Po ∈ RT×4hw, masks Mo ∈ RT×hw, and the images
Io ∈ RT×3hw for the oth planar object. The memory pool
{(Po,Mo, Io)}No=1 stores the tracked N planar objects.
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Figure 4: Illustration of the reformulated form of MPOT. We
predict heatmaps of four ordered vertexes and the mask for each
planar object. The stacked masks are built in a layered structure
and are responsible for the occluders and occludees.

However, due to the challenge of accurately tracking
multiple planar objects, the error accumulation [46] occurs
because of memorizing incorrect predictions. To avoid this
issue, we filter out the low-confident predictions. Given the
current frame, PRTrack predicts the vertexes P̂ o ∈ R4hw

and mask M̂o ∈ Rhw for the oth tracked planar object. We
compute the confidence of the mask and vertexes as

Mconf = min({max(M̂o)}
O

o=1)

Pconf = min({max(P̂ o)}
O

o=1)
. (1)

The predictions with the confidences surpassing the thresh-
old are restored in the memory pool module. The reuse gate
is only applied during testing.

4.3. Appearance Perception

Our appearance perception network is built on top of
the encoder-decoder architecture [62], with a backbone of
ResNet50. For the current frame, we extract appearance
feature fcur ∈ RCHW from an image, where H,W,C de-
notes the width, height, and the number of channels of the
feature. For previous frames, we extract features from ver-
texes, masks, and images, and sum the three features as
fpre ∈ RT×CHW . The current image feature and previ-
ous target features are fed into the encoder network to yield
appearance features fo

T+1 ∈ RCHW for oth planar object.
The plane structure branch and segmentation prior branch
finally predict the coarse results of vertexes and masks.
Vertex Encoder with Shifted Sampling Strategy. Con-
sidering the vertexes of the planar object provide the pixel
correspondence across frames, each vertex is independent
against others, thus they are organized in sequential or-
der [47]. Therefore, we design an encoder with shifted sam-
pling strategy to leverage the characteristic of vertexes (i.e.,
the clockwise order), as the feature extractor. As shown in
Fig. 5, a random cyclic shift function shift(·,+r) is first
applied to build the connection between the vertex heatmap
Pi ∈ RHW and its neighbors by shuffling position as

shift(P,+r) = [P(1+r)%L, . . . , P(L+r)%L], (2)

where L is the number of vertexes in the planar object and
r ∈ {0, 1, 2, 3} is a random number. % is the mod opera-
tion. Then, we apply 7 × 7 convolutions [25] to extract the
features of four ordered vertexes, separately. For modeling
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Figure 5: Illustration of our proposed vertex encoder. Given
the vertex heatmaps, we random sample them by a cyclic shift
operation, following a clockwise order and with an offset of r.
Note that PSB, as a counterpart, predicts the vertexes via a cyclic
shift function with negative r.

the order between four vertexes, we introduce the cosine
positional embedding [74] and add it to the vertex represen-
tation. The positional embedding femb ∈ RL×N contains
the N-d embeddings corresponding to the order information
for the features of L vertexes. The feature of ordered ver-
texes is then extracted by a 7 × 7 convolution to capture
long-range spatial interaction between vertexes.
Plane Structure Branch (PSB). Given the shifted feature
map of vertexes from the decoder, a 1 × 1 convolution is
attached with the sigmoid function to output the heatmap of
the vertexes. The shifted vertex heatmaps are then aligned
with the shifted input in Equ. 2 by using the reversed cyclic
shift operation shift(·,−r). Finally, we get the heatmaps
of oth planar object P o ∈ RHW by upsampling to the same
resolution as the original image.
Segmentation Prior Branch (SPB). The mask can accu-
rately locate the planar object at the pixel level and cap-
ture the relative movement between objects such as occlu-
sion [55,78]. Therefore, we utilize a 1×1 convolution with
the softmax function alongside the foreground/background
dimension. Following [62], The probability of background
mbkg and each foreground object mo are obtained by aggre-
gating the output of model logits ∈ RO×HW as

mo =
exp(logitso)∑O
i=1 exp(logitsi)

, mbkg =

O∏
i=1

(1−mo). (3)

Finally, the probability segmentation mask of oth planar ob-
ject Mo ∈ RHW are produced after softmax. The back-
ground probability map is attached in the last channel.

4.4. Occlusion Reasoning

With the above coarse output perceiving from the visible
part, we move to the next stage of reasoning the occluded
part by the motion of planar objects (i.e., homography). In
multiple object tracking, reasoning the occlusion by motion
has been verified effective [97, 98], where a motion strat-
egy is adopted to predict the future location of the target
based on the historical trajectory. Inspired by this, we first
develop a homography-guided strategy that locates the oc-
clusion area and correct features from previous frames ge-
ometrically. We factorize the homography matrix into mo-
tion parameters that describe the common transformations,
to estimate the sensitive homography matrix (as discussed



in Sec. 1). Then, for tracking both visible and invisible parts
of planar objects, we design a two-stream self-attention net-
work that takes both the appearance features of the current
frame and the motion-guided features of the previous frame
to refine the predicted planar object.
Occlusion Area Localization Strategy. To avoid the sen-
sitivity problem discussed in Sec. 1, we first introduce the
geometric definition of homography matrix H ∈ R3×3 [23],
and factorize it into similarity transformation HS and resid-
ual one HΛ, with eight stable motion parameters of hp =
(tx, ty, γ, θ, k1, k2, v1, v2) as

H = HSHΛ =

γ cos θ −γ sin θ tx
γ sin θ γ cos θ ty

0 0 1

k1 k2 0
0 1

k1
0

v1 v2 1

 ,

(4)
where tx, ty are the transition offset, γ and θ denote the

change of scale and angle, and k1, k2, v1, v2 control the
parameters of matrix HΛ. Here, the motion parameters
can be computed by solving a transcendental equation with
eight variants. The location parameters can be written as
hl = (x1, y1, x2, y2, x3, y3, x4, y4).

Specifically, the location parameters and homography
are obtained from the coarse output of appearance percep-
tion, where we apply the Argmax function on heatmaps to
get the coordinates of vertexes and compute the homogra-
phy matrix between the coordinates from the current frame
and the previous one. Then, the factorized homography
hp and location parameters hl are fed into the Kalman Fil-
ter [29] and yield the corrected ones ĥp, ĥl. Finally, ho-
mography matrix Ĥo for the oth planar object in the current
frame can be obtained.

Given the predicted homograhpy, the mask from previ-
ous frame M̂o

p can be warped [3] by the perspective trans-
formation warp(M̂o

p , Ĥ
o). To locate occlusion area, the

intuition is that the heatmap inferred by historical motion
is robust to the occlusion on appearance. Meanwhile, the
heatmap predicted based on appearance can accurately lo-
cate the planar objects in the current frame. As a result, we
indicate the area of occlusion as

ϕo =
1∑
i δi

∑
i

δi · ∥warp(M̂ i
p, Ĥ

i)−Mo∥, (5)

where ∥ · ∥ is the distance function computed per pixel and
δi judges the mask confidence of ith planar object.
Motion Reasoning Network. For reasoning the visible
and invisible parts of planar objects, we leverage the oc-
clusion indicator ϕo as guidance, where the features fo

T+1
from the current frame are refined, together with the warped
feature warp(fo

T , Ĥ
o) from the previous frame. We denote

these two features as fa and fm, respectively. The features
are first flattened alongside spatial dimension fa, fm ∈
Rcd×HW . Then, we develop a multi-head self-attention
(MHSA) mechanism [31] for extracting occlusion-aware
features. For learning joint representation and encouraging

the interactions between appearance and motion, we feed
both features into MHSA as

X = Concat(h1, . . . , hH)

hi = aifW
V
i

ai = softmax(
[fWQ

i ][fWK
i ]

⊤

√
dk

)

f = Concat(fm, fa)

, (6)

where WQ
i ,WK

i , and WV
i are the matrixes. We then

adopt MLP to extract representations for motion feature Xm

and appearance feature Xa, respectively. For assembling,
we integrate both features guided by indicator ϕo

Focc = Fens(Fϕ(Xa), Xm), (7)
where Fens and Fϕ are 1 × 1 convolution layer, Fϕ con-
catenates the occlusion indicator with input feature as guid-
ance. Finally, given the mask and vertex heatmaps of the oth

occluded planar object, we feed the features into the dual-
branch network used in the stage of appearance perception
again and obtain the refined vertexes P̂ o and mask M̂o.

5. Experiment
5.1. Evaluation Metrics

To evaluate methods on MPOT, following [15], we uti-
lize the CLEAR metric [58] to complement the POT met-
rics. Note that existing POT metrics estimate the difference
between ground truth and prediction in a pairwise manner
(i.e., 1-box to 1-box). But it is not suitable for MPOT, since
the number of predictions and ground truths are not always
equal. Therefore, we match the set of ground truth GTt and
prediction Pt by bipartite matching [33]. Sequentially, we
compute the difference of the matched pair by well-known
POT distance Alignment Error [43, 45, 70] as

EAL(p,g) =

√∑4
j=1 (pj − gj)

2

4
, (8)

where p and g are the quadrangle of the prediction and
ground truth. Then, the prediction and ground truth are split
into tracked T t

ϵ , true positive TP t
ϵ, false negative FN t

ϵ, and
false positive FP t

ϵ, according to distance ϵ. We set ϵ as 50
in our experiment due to the degree of challenge.

In POT, Precision (Prϵ) is the commonly used metric
based on the alignment error [43]. To complement the met-
rics, we report Recall (Rcϵ) to consider the cases of not be-
ing tracked. Furthermore, we propose Multiple Planar Ob-
ject Tracking Distance (Dϵ) as

Dϵ =

∑T
t=1

∑
tp∈TP t

ϵ,q∈T t
ϵ
EAL(tp, q)∑T

t=1 |TP
t
ϵ|

. (9)

Naturally, we propose the Multiple Planar Object Tracking
Accuracy (Accϵ) based on EAL as.

Accϵ = 1−
∑T

t=1 |FN t
ϵ|+ |FP t

ϵ|+ |IDSW t
ϵ|

3 ·
∑T

t=1 |GTt|
, (10)

where IDSW t
ϵ is the set of the identity switch [58] under

the threshold ϵ in tth frame, and | · | indicates the mod oper-



Table 3: Comparison of two groups of methods on MPOT-3K. The results on five metrics including Success Rate, Multiple Planar
Object Tracking Accuracy, Multiple Planar Object Tracking Distance, Precision, Recall, and Speed are reported. ↑ (↓) denotes that the
higher (lower) the score, the method performs better. Bold and underline indicate the highest and second-highest performance, respectively.

Methods Traditional Deep

OursMotion Patterns Metrics CMT
[61]

NCC
[71]

CCRE
[76]

MI
[17]

GOP
[8]

Gracker
[79]

STM
[62]

PoST
[60]

LISRD
[64]

SMask
[78]

SRPN+
[38]

SPoint
[16]

SOS
[73]

GIFT
[53]

HDN
[95]

Overall

S0.8 ↑ 09.50 00.19 09.99 26.70 56.03 67.92 09.07 33.52 63.43 64.04 67.23 71.82 72.91 75.86 76.40 82.51
Accϵ ↑ 64.27 61.95 34.34 37.82 62.28 88.38 52.05 39.55 72.39 73.29 75.37 71.17 70.06 72.99 79.50 94.59
Prϵ ↑ 37.05 03.64 14.12 23.57 45.25 85.67 25.64 25.02 56.23 58.38 60.70 54.58 53.23 56.41 65.21 92.85
Rcϵ ↑ 10.24 00.55 19.08 38.60 62.72 78.25 23.07 40.74 80.40 69.55 74.45 81.25 85.37 84.02 82.56 90.78
Dϵ ↓ 12.30 42.15 17.27 08.68 06.37 05.23 18.79 22.71 06.93 17.06 16.77 07.67 07.76 07.80 07.44 05.07

Moving Occlusion

S0.8 ↑ 11.34 00.00 10.69 26.47 55.85 63.68 08.78 18.17 73.79 63.29 70.62 70.91 73.42 72.92 74.96 80.29
Accϵ ↑ 67.25 62.78 56.21 68.10 81.41 92.93 55.49 48.04 91.74 81.46 83.27 89.92 92.28 89.74 88.74 93.16
Prϵ ↑ 53.48 4.92 33.56 51.82 70.05 76.30 29.63 25.45 86.37 74.57 75.94 84.73 84.35 84.21 82.00 90.95
Rcϵ ↑ 13.47 00.64 32.01 61.57 77.30 81.98 24.37 28.98 80.70 67.62 72.97 85.39 85.03 85.50 84.86 88.27
Dϵ ↓ 06.31 42.14 21.29 08.79 04.13 07.92 16.54 27.26 06.41 15.57 14.29 06.06 06.17 06.05 06.24 05.34

Moving Objects

S0.8 ↑ 09.34 00.69 11.23 24.29 52.21 61.58 08.09 35.52 67.79 62.95 65.49 65.50 70.36 67.02 70.09 79.12
Accϵ ↑ 69.22 63.86 40.78 47.41 68.96 92.54 53.77 41.96 76.88 80.33 82.72 78.44 69.29 78.59 81.05 94.29
Prϵ ↑ 60.28 17.10 19.24 32.57 52.50 90.48 28.33 27.13 60.87 68.62 72.09 67.75 52.41 67.97 67.18 92.27
Rcϵ ↑ 22.87 2.19 24.27 53.95 72.51 56.77 25.28 43.96 87.73 75.75 79.22 67.66 86.09 67.79 84.43 90.44
Dϵ ↓ 12.71 43.21 17.66 06.85 05.71 04.11 21.77 19.93 05.15 14.92 15.48 04.21 04.53 04.16 05.63 05.46

Camera Occlusion

S0.8 ↑ 14.61 00.00 13.31 41.79 63.59 66.41 13.80 40.21 85.46 62.46 59.40 88.85 88.28 89.43 84.01 92.46
Accϵ ↑ 63.54 61.93 34.28 40.28 61.72 87.98 51.72 37.15 74.06 61.66 68.71 72.18 71.90 72.10 84.51 95.85
Prϵ ↑ 36.89 00.38 18.42 27.84 45.04 88.24 24.59 25.31 56.76 44.83 52.31 54.67 54.42 54.60 73.16 95.84
Rcϵ ↑ 13.19 00.06 28.32 49.74 67.38 73.75 21.70 45.37 84.32 64.86 70.75 87.57 87.15 87.50 84.52 91.53
Dϵ ↓ 10.31 29.38 20.10 07.71 06.73 04.63 25.05 20.08 04.82 14.46 14.45 04.81 04.62 04.73 05.18 04.59

Speed ↑ 00.58 01.98 00.31 01.25 01.00 03.14 35.44 11.90 08.63 31.52 10.87 09.32 12.51 26.62 16.37 12.64

ation. To fairly compare along with the trajectory level, we
adopt the success rate (Sα) with the distance threshold α as

Sα =
|C|
|I|

,C = {in ∈ I|
∑T

t=1 |T t
ϵ |∑T

t=1 |GTt|
> α}, (11)

where I is the set of planar objects in the video.

5.2. Implementation Details

We compare our model with fifteen representative meth-
ods. These methods are implemented by official code or
open-source libraries [6,72]. We run evaluated single object
trackers multiple times for different planar objects. And we
equip them with the data association strategy based on [12],
for integrating each single object tracker into tracking mul-
tiple targets online. Besides, we additionally give the refer-
ence frames of ground truth if the single object trackers fail
to track. Different from other box-based trackers, mask-
based trackers (e.g., STM) directly outputs the mask. Thus,
we use a rotated box estimator [88] to transfer the mask.
We implement PRTrack using two RTX3090 GPUs. In the
training stage, we use data augmentations, including flip,
pepper noise, rotation, contrast jittering, and perspective
transformation. We adopt a data sampling strategy follow-
ing [41]. We adopt Smooth L1 loss and Cross-Entropy loss
for optimizing the predicted vertex heatmaps and masks.
Similar to [62], we pretrain SPB on YouTubeVOS [89] and
DAVIS [66] datasets. During inference, we use the ordered
vertexes to build the planar objects and estimate the homog-
raphy matrix. We set the threshold as 0.9 in the reuse gate
by grid search and set r in Equ. 2 as 0 during inference.

5.3. Results on MPOT-3K

We compare our PRTrack with the other fifteen trackers
on MPOT-3K, which contains six traditional POT trackers,
four deep-based generic object trackers, and five deep-based
planar object trackers. Tab. 3 reports the overall perfor-
mance as well as the one in the challenging situations of
moving occlusion, moving objects, and camera occlusion.
Deep vs. Traditional Trackers. We can observe that the
deep-based trackers have increased by 82.6% on average,
on five metrics for overall performance. This is because
deep-based trackers avoid taking some assumptions under
the laboratory environment, such as the invariance to illu-
mination and appearance change. Note that Gracker per-
forms best in traditional trackers and achieves competitive
performance with the deep-based tracker group. However,
since MPOT-3K has many small planar objects, it can not
extract sufficient information, thus resulting in suboptimal
performance (i.e., 10.3% degradation in comparison with
ours). In terms of deep-based trackers, STM predicts seg-
mentation masks at the pixel level while ignoring the order
of vertexes. Thus, it results in inferior performance, where
only 9.0% of targets are correctly tracked.
Planar Object Trackers vs. Generic Object Trackers.
Planar object trackers achieve higher performance (58.9%
improvement) against generic object trackers, including
SRPN+, SMask, STM, and PoST. A predominant reason
is that the generic trackers are subject to the assumption
of affine transformation, where only the coarse box estima-
tion is required. Therefore, a powerful planar object tracker
should be developed in this field.
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Figure 6: Comparison on POT210 and POT280. The averaged
Precision on two datasets with different thresholds are reported in
(a) and (b), respectively. (c) further shows the performance under
seven challenging factors. The data is extracted from [95].

PRTrack vs. SOTA Trackers. PRTrack outperforms other
methods with an average improvement of 6.4%. We also
observe a large gain when there exists relative movement
among multiple targets. To be specific, when facing chal-
lenging situations like moving objects, moving occlusion,
and camera occlusion, PRTrack achieves a performance
gain of 16.9% against other advanced algorithms.

5.4. Results on POT210 and POT280

To verify the effectiveness of PRTrack on the traditional
POT task, we conduct experiments on the POT210 and
POT280 datasets, and compare PRTrack with eleven POT
methods as shown in Fig. 6. Note that we do not fine-tune
PRTrack on these two datasets, again verifying the gener-
alization ability of PRTrack towards unseen scenes. Fol-
lowing [95], the averaged Precision is employed to evaluate
all the methods. As the distance threshold EAL increases,
the precision tends to be stable when EAL>10. We notice
that PRTrack achieves competitive performance in compar-
ison with advanced algorithms. Besides, PRTrack shows its
superiority when handling challenging cases such as occlu-
sion and motion blur.

5.5. Ablation Study

We conduct ablation studies on MPOT-3K in Tab. 4 to
explore the effectiveness of each component in PRTrack.
Our baseline is the appearance perception module, without
shifted encoder and auxiliary mask. For simplicity, we use
“i&j” to denote the comparison between the ith line and the
jth line in the rest of this subsection.

We first perform module-wise ablation studies in the
highlighted lines, we observe that PRTrack obtains the
largest performance gain of 11.6% (i.e., ③&⑨ and ④&⑩)

Table 4: Ablation study of components and their variants of
PRTrack on the validation split of MPOT-3K. The lines with
background indicate the module-level ablation study. Here AP,
OR, and RT are short of appearance perception, occlusion reason-
ing, and memory pool. SE and Fac denote the shifted encoder and
factorized homography matrix. Msk represents the plane struc-
ture branch with mask information. Here, ‘∗’, ‘•’, and ‘♢’ are the
fusion strategy (Fus), representing concatenation, attention-based,
and indicator-based. Gat indicates the reuse gate.

Id AP OR RT Metrics
SE Msk Fac Fus Gat S0.8 ↑ Accϵ ↑ Pr ↑ Rc ↑ Dϵ ↓

① ✓ 45.29 68.01 46.75 46.71 19.56
② ✓ ✓ 63.76 86.82 82.36 76.96 15.40
③ ✓ ✓ 75.82 91.08 86.22 82.96 12.57
④ ✓ ✓ ✓ 78.20 91.43 87.19 86.42 09.95
⑤ ✓ ✓ ✓ ✓∗ ✓ 77.53 91.46 90.41 86.25 10.43
⑥ ✓ ✓ ✓ ✓• ✓ 78.99 91.41 88.07 85.87 09.12
⑦ ✓ ✓ ✓♢ ✓ 79.24 91.50 88.10 86.13 08.95
⑧ ✓ ✓ ✓♢ ✓ 76.38 90.56 88.58 82.34 10.59
⑨ ✓ ✓ ✓ ✓♢ 80.44 92.48 89.67 87.54 07.38
⑩ ✓ ✓ ✓ ✓♢ ✓ 80.58 92.75 90.00 88.03 06.39

with the occlusion reasoning module. Then we investigate
the variants of each module. For appearance perception, we
study how to leverage the order of vertexes. The boosting
of 16.3% (i.e., ②&③ and ⑧&⑩) verifies that the proposed
encoder avoids learning position bias, where the first ver-
tex commonly comes from the top-left area. For occlusion
reasoning, we find the solution to unify the appearance fea-
ture and motion feature. We first conduct experiments on
alternative solutions of fusion (i.e., ⑤&⑥&⑩), where our
strategy achieves the best performance. Because the oc-
clusion indicator provides the change of image against oc-
clusion and joint embedding helps to introduce interaction
between features. We also identify the effectiveness of ho-
mography factorization via the comparison of ⑦&⑩, with
an average boosting of 7.2%. For memory pool, we investi-
gate the accumulated error. With a gain of 4.4% (i.e., ③&④
and ⑨&⑩), we believe the proposed reuse gate can avoid
the error derived from restoring the predictions.

6. Conclusion
In this paper, we propose a novel method for tracking

multiple planar objects simultaneously. We also build the
first large-scale benchmark dataset MPOT-3K which con-
tains sufficient data, is labeled by experienced annotators,
and covers various scenes. Extensive experiments are con-
ducted on both MPOT3K and the other two single pla-
nar object tracking datasets. The results demonstrate that
PRTrack achieves SOTA performance on both tasks.
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Richa. Improving ncc-based direct visual tracking. In
ECCV, 2012.



[72] Abhineet Singh and Martin Jagersand. Modular tracking
framework: A fast library for high precision tracking. In
IROS, 2017.

[73] Yurun Tian, Xin Yu, Bin Fan, Fuchao Wu, Huub Heijnen,
and Vassileios Balntas. Sosnet: Second order similarity reg-
ularization for local descriptor learning. In CVPR, 2019.

[74] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser,
and Illia Polosukhin. Attention is all you need. In NIPS,
2017.

[75] Paul Voigtlaender, Michael Krause, Aljosa Osep, Jonathon
Luiten, Berin Balachandar Gnana Sekar, Andreas Geiger,
and Bastian Leibe. Mots: Multi-object tracking and seg-
mentation. In CVPR, 2019.

[76] Fei Wang and Baba C Vemuri. Non-rigid multi-modal
image registration using cross-cumulative residual entropy.
IJCV, 74(2):201–215, 2007.

[77] J.Y.A. Wang and E.H. Adelson. Representing moving im-
ages with layers. TIP, 3(5):625–638, 1994.

[78] Qiang Wang, Li Zhang, Luca Bertinetto, Weiming Hu, and
Philip HS Torr. Fast online object tracking and segmenta-
tion: A unifying approach. In CVPR, pages 1328–1338,
2019.

[79] Tao Wang and Haibin Ling. Gracker: A graph-based planar
object tracker. TPAMI, 40(6):1494–1501, 2017.

[80] Zhongdao Wang, Liang Zheng, Yixuan Liu, Yali Li, and
Shengjin Wang. Towards real-time multi-object tracking.
In ECCV, 2020.

[81] Bowen Wen and Kostas Bekris. Bundletrack: 6d pose track-
ing for novel objects without instance or category-level 3d
models. In IROS, 2021.

[82] Changsong Wen, Guoli Jia, and Jufeng Yang. Dip: Dual
incongruity perceiving network for sarcasm detection. In
CVPR, 2023.

[83] Longyin Wen, Dawei Du, Zhaowei Cai, Zhen Lei, Ming-
Ching Chang, Honggang Qi, Jongwoo Lim, Ming-Hsuan
Yang, and Siwei Lyu. Ua-detrac: A new benchmark and
protocol for multi-object detection and tracking. CVIU,
193:102907, 2020.

[84] Xinshuo Weng, Jianren Wang, David Held, and Kris Kitani.
AB3DMOT: A Baseline for 3D Multi-Object Tracking and
New Evaluation Metrics. ECCVW, 2020.

[85] Jialian Wu, Jiale Cao, Liangchen Song, Yu Wang, Ming
Yang, and Junsong Yuan. Track to detect and segment: An
online multi-object tracker. In CVPR, 2021.

[86] Z. Wu, J. Guo, S. Zhang, C. Zhao, and X. Ma. An ar bench-
mark system for indoor planar object tracking. In ICME,
2019.

[87] J. Xiao, J. Hays, K. A. Ehinger, A. Oliva, and A. Torralba.
Sun database: Large-scale scene recognition from abbey to
zoo. In CVPR, 2010.

[88] Bao Xin Chen and John Tsotsos. Fast visual object tracking
using ellipse fitting for rotated bounding boxes. In ICCVW,
2019.

[89] Ning Xu, Linjie Yang, Yuchen Fan, Jianchao Yang,
Dingcheng Yue, Yuchen Liang, Brian Price, Scott Cohen,
and Thomas Huang. Youtube-vos: Sequence-to-sequence
video object segmentation. In ECCV, 2018.

[90] Bin Yan, Yi Jiang, Peize Sun, Dong Wang, Zehuan Yuan,
Ping Luo, and Huchuan Lu. Towards grand unification of
object tracking. In ECCV, 2022.

[91] Jinyu Yang, Zhe Li, Song Yan, Feng Zheng, Aleš
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