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Figure 1: Sentimental segments from The Wolf of Wall Street. In the purple boxes, we show the classic segments (highlights of

the film) that underpin the development of the story in the video, where each segment may convey a different sentiment. In

the green boxes, the intervals between the highlights provide contextual information and carry neutral sentiment.

ABSTRACT

Video sentiment analysis aims to uncover the underlying attitudes

of viewers, which has a wide range of applications in real world.

Existing works simply classify a video into a single sentimental

category, ignoring the fact that sentiment in untrimmed videos

may appear in multiple segments with varying lengths and un-

known locations. To address this, we propose a challenging task,

i.e., Temporal Sentiment Localization (TSL), to find which parts

of the video convey sentiment. To systematically investigate fully-

and weakly-supervised settings for TSL, we first build a bench-

mark dataset named TSL-300, which is consisting of 300 videos

with a total length of 1,291 minutes. Each video is labeled in two

ways, one of which is frame-by-frame annotation for the fully-

supervised setting, and the other is single-frame annotation, i.e.,

only a single frame with strong sentiment is labeled per segment

for the weakly-supervised setting. Due to the high cost of labeling

a densely annotated dataset, we propose TSL-Net in this work, em-

ploying single-frame supervision to localize sentiment in videos. In

detail, we generate the pseudo labels for unlabeled frames using a

greedy search strategy, and fuse the affective features of both visual

and audio modalities to predict the temporal sentiment distribution.

Here, a reverse mapping strategy is designed for feature fusion, and

a contrastive loss is utilized tomaintain the consistency between the

original feature and the reverse prediction. Extensive experiments
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show the superiority of our method against the state-of-the-art

approaches.
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1 INTRODUCTION

Video has become the most popular information carrier on In-

ternet, e.g., within the five minutes you’ve been reading the ab-

stract, YouTube has received 2,500 hours of videos uploaded from

users [49]. Therefore, it is naturally urgent to analyze such a large

amount of video data. For this purpose, video content analysis focus-

ing on objects and actions has been studied for decades. However,

there still exists an affective gap between the content present in

videos and the cognitive emotion of ones who view the videos [67].

Since video sentiment analysis aims to automatically reveal people’s

underlying attitudes toward a video [48], it meets this need and

has a large number of applications in three aspects. First, content

providers like YouTube could protect the mental health of teenagers

from videos containing violent [7] or abnormal content [47, 53] via

sentiment-based detection. Second, companies could utilize video

data to develop product plans guided by commercial advertising

analysis [17] and consumer sentiment analysis [9]. Last, online

education platforms could improve the quality of teaching by auto-

matically analyzing user’s feedback and his/her attitude [1, 45]. Due
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Figure 2: Difference between TSL and the previous works.

(a) In video sentiment classification, the video is cropped

manually, and multiple segments are then fed into the clas-

sification model. (b) TSL aims to simultaneously localize and

classify multiple segments conveying sentiments in a video.

to the existence of various downstream applications, many efforts

have been made in the field of video sentiment analysis [10, 31, 52].

Currently, most works focus on recognizing the single dominant

sentiment evoked in a video [25, 60, 63]. They first crop the video

into segments based on the speaker’s sentence to construct the

dataset [25, 60, 63]. Next, classification networks are developed to

predict the sentiment of each segment [34, 37]. Thus, existing works

that recognize the sentiment of trimmed video (i.e. cropped seg-

ments) have two limitations. First, cropping the video into segments

is time-consuming and labor-sensitive, with human experts operat-

ing or requiring extra information such as subtitles [60, 63]. Second,

recognizing the dominant sentiment in the trimmed video limits the

downstream applications that require analyzing untrimmed videos

such as movies and TV shows [7, 44]. Therefore, to avoid additional

processes and support wider applications, some algorithms are de-

veloped to recognize the sentiment in untrimmed videos [19, 57, 71].

This is a challenging task because the sentiment conveyed in the

untrimmed video become more complex with increasing length.

For instance, as shown in Figure 1, a video may convey multiple

sentiments and each sentiment appears with varying lengths and

locations.

To address this, we propose Temporal Sentiment Localization

(TSL) to localize multiple segments conveying sentiments. Differ-

ent from previous works that only predict sentimental category

(Figure 2(a)), this work aims to simultaneously localize and classify

the sentiments in untrimmed videos (Figure 2(b)). Specifically, with

the prediction of all frames, we could aggregate the sentiment seg-

ments temporally and provide segment-level classification results.

As is well known, training an effective model highly depends on a

large-scale precisely labeled video dataset, i.e., per-frame annota-

tion. This labeling strategy is expensive due to the large number

of frames. Moreover, since sentiment has the inherent character-

istics of subjectivity and ambiguity, it usually needs multi-round

labeling for this task. To alleviate the annotation cost, some weakly-

supervised methods have been proposed [13, 21, 24]. The employed

supervisions can be grouped into video-level and single-frame sig-

nals. Video-level signal [33, 36] indicates whether a class exists

in the video, which is the weakest cue for training models. While

single-frame signal [35, 38] additionally provides the timestamp of

the occurrence for better localization performance. Besides, com-

pared to full supervision that all the frames in the video are labeled,

a single-frame supervision only provides one labeled frame per

segment. Although employing weak supervision helps to alleviate

heavy annotation burden (see details in Table 1), it brings new chal-

lenges. In this paper, we systematically investigate the fully- and

weakly-supervised settings for TSL to reduce annotation cost.

First, we build a benchmark dataset, namely TSL-300. Specif-

ically, we collect 300 untrimmed videos with a total length of

1,291 minutes from the well-used datasets in this field, i.e., Ek-

man6 [57], VideoEmotion8 [19], CMU-MOSI [62], CMU-MOSEI [62].

The videos include movies, TV shows, and speech videos. Each

video is additionally labeled in a frame-by-frame manner for fully-

supervised learning setting, as well as single-frame annotation for

weakly-supervised learning setting. Second, we propose a weakly-

supervised multimodal fusion network, called TSL-Net, which fuses

multimodal features from both visual and audio modalities. To pre-

serve the information from each affective modality, we develop

a reverse mapping algorithm to predict the feature before fusion.

We then employ a contrastive loss to regularize the consistency

between the original features and the reverse prediction. Using two

training signals generated from single-frame annotations, we opti-

mize the network by jointly training. For the frame-by-frame signal,

we develop it to represent the sentiment within each frame. Based

on confidence of frame-by-frame predictions, we search for pseudo

labels to complete the signal via a greedy search strategy. For the

video-level signal, we use it to represent the conveyed sentiment of

a video, where we model the sentiment distribution guided by the

distribution of single-frame annotations.

The contributions of this work are three-fold: 1) We propose a

challenging task of temporal sentiment localization to bridge the

gap between video sentiment analysis and real-world applications.

A benchmark dataset named TSL-300 is collected, where both the

frame-by-frame annotations and single-frame annotations are pro-

vided. The dataset will be released to the community and may boost

the research in this field. 2) We present a weakly-supervised frame-

work, i.e., TSL-Net, which can train a multimodal fusion network

for temporal sentiment localization only using the single-frame

supervision. This setting reduces the cost of dense annotations. 3)

Extensive experiments demonstrate the superiority of our method

against the state-of-the-art weakly-supervised methods.

2 RELATEDWORK

2.1 Video Sentiment Analysis

Dataset. Due to the diversity of types of videos, video sentiment

analysis has investigated multiple carriers of the sentiment, such

as speech videos and movies. According to the type of video data,

existing datasets for video sentiment analysis can be grouped into

trimmed video datasets [62, 63] and untrimmed video datasets [19,

25, 57]. To analyze the sentiment in the trimmed video, CMU-

MOSI [62] and CMU-MOSEI [63] datasets collect 2,199 and 23,453

sentences in the video, respectively. The sentences are cropped

200



Temporal Sentiment Localization: Listen and Look
in Untrimmed Videos MM ’22, October 10–14, 2022, Lisboa, Portugal

from the video based on the punctuation of video transcription

and then verified by human experts. In the CH-SIMS dataset [60],

human experts use video editing tools manually for precise crop-

ping. To directly predict the sentiment of untrimmed videos from

social media, VideoEmotion8 [19] and Ekman6 [57] datasets collect

1,101 and 1,637 web videos from YouTube and Flickr, respectively.

With an average duration of 107 and 112 seconds, two datasets are

labeled for single-label classification.

Method. Video sentiment analysis methods [34, 37, 71] leverage

multiple affective cues such as visual, audio, and textual infor-

mation [56] for predicting sentiment, which can be split into di-

rect methods and indirect methods. Early works [16, 20, 22, 54]

directly estimate the conveyed sentiment of the videos. For exam-

ple, Kang [22] maps the low-level features to the sentiment of the

movies by hidden markov models. To improve the effectiveness of

the extracted features, Jiang et al. [19] leverage the rich semantic

information of adjective-noun pairs to build up mid-level repre-

sentation from SentiBank [2]. Due to the high-level abstract of

sentiment, some indirect methods [25, 68, 68] focus on leveraging

the emotional impact of the video contents, such as the facial ex-

pression of speakers. The key to these methods is the fusion of

multimodal information, including facial expression, audio senti-

ment, and so on. To capture the information in each affective modal-

ity, CapsGCN [31] integrates inter-relations and intra-relations of

multimodality by graph convolutional network.

2.2 Video Temporal Localization

Fully-supervised temporal localization [12, 43, 50, 64] is to rec-

ognize the class of instances and locate the corresponding temporal

boundaries in the untrimmed video, which can be divided into two

patterns, i.e., one-stage [32] and two-stage [5, 8, 58]. The difference

is that two-stage methods generate proposals and then classify the

categories. Although fully-supervised temporal localization meth-

ods achieve promising performance, the model highly relies on

densely annotated data, i.e. labeling thousands of frames in a video

(see details in Table 1).

Weakly-supervised temporal localization [11, 14, 18, 26, 41, 46,

66, 73] aims to weaken the requirement for annotations, i.e. train a

model by the easily accessible supervision signal. According to the

used weak supervision signals, existing methods can be roughly

grouped into video-level and single-frame. For themethods utilizing

video-level supervision, UntrimmedNet [55] is the first to learn the

temporal action localization network by coupling the classification

and selection modules. However, there exists ambiguity mapping

problem when multiple actions are presented in a video [72]. To

address this, CoLA [66] introduces a mining strategy to locate the

snippets and integrates a contrastive loss at the snippet level. More

recently, to better leverage the annotation, single-frame supervi-

sion [38] additionally provides a timestamp per segment to indicate

the presented action. These methods generate the pseudo label

guided by the timestamp information to train the model. According

to the contextual frame and pseudo background frame, SF-Net [35]

identifies the pseudo action in unlabeled frames. Further, LACP [27]

leverages the background points to supplement the action, and then

learns representations via feature similarity.

3 TSL-300 DATASET

Our dataset consists of 300 untrimmed videos with an average

video time of 4.3 minutes. We filter out three types of abnormal

videos to provide a high-quality and diverse dataset. The selected

videos are annotated by four well-trained annotators from different

backgrounds. In order to alleviate the burden of dense annotation,

we study the weakly-supervised setting and the fully-supervised

setting used for training a model.

3.1 Data Collecting

To build up our dataset, the types of collected videos include speech

videos, movies, and TV shows. Specifically, we collect speech videos

from the raw untrimmed data of the CMU-MOSEI [63] and CMU-

MOSI [62]. The movies and TV shows are derived from the Ek-

man6 [57] and VideoEmotion8 [19] datasets. We first collect 6,667

untrimmed videos. Then, we filter out two types of abnormal data

during the checking and selecting stages. For one thing, sequences

of static images are not taken into consideration since they have

been well studied in visual sentiment analysis. For another thing,

the recurring videos reduce diversity by conveying similar senti-

ments over a repeated duration.

3.2 Data Annotation

Due to the subjectivity of sentiment, different people might feel

differently about the same video. To avoid bias from the annotators,

we select four annotators from different backgrounds.

Before annotating, we train and test the annotators to guarantee

the quality of the labels. In order to train annotators, we provide

annotation guidelines to all participants, including the purpose

of our study, detailed descriptions of the annotation process, the

statistics of our dataset, and instructions of labeling software. For

testing, we ask each participant to annotate 10 videos covering all

types of videos. We regard a label as correct when the category is

labeled correctly and the segment possesses more than half of the

overlap with the label. An annotator will not be hired before he or

she achieves an accuracy of 80% in the testing.

During annotation, we use the sentiment model from philosoph-

ical theory [6], which groups human attitudes toward instances

into positive, neutral, and negative attitudes. Then, we aggregate

the annotations from multiple annotation professors. With the ag-

gregated label, the proportion of achieving agreement (i.e. over half

annotators vote for the same sentiment) is 98.97% for TSL-300.

Frame-by-frame annotation. For providing dense annotations,

i.e., full supervision, an annotator follows the below scheme to

annotate a video multi-round. First, the annotator labels a segment

when it evokes an emotional response. Then, aiming to indicate a

segment, the temporal boundary and its corresponding sentiment

are recorded. Finally, the multi-round labeling ends when an an-

notator does not find a new sentiment after watching the video.

Considering the subjectiveness of annotators, we aggregate the

annotations from multiple annotators. We yield the label of each

frame according to each annotator and then aggregate sentiment

label by majority voting for frame-by-frame annotation.

Single-frame annotation. To investigate how to alleviate the

annotation burden, we label these videos in a weakly-supervised

setting. The aforementioned full supervision requires annotators to
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Figure 3: The statistics around collecting and labeling of our dataset. (a): The distribution of scene category is given by PlacesCNN [74]. (b):

The distribution of segments and the single-frame annotaions in our TSL-300 dataset, including number, location and length.
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Figure 4: The statistics around actions of our dataset. (a): A segment

of Sheep Racing and corresponding actions. (b): The temporal loca-

tion distribution of action in our TSL-300 dataset.

watch a video multiple times and carefully determine the temporal

boundary of each segment. To reduce the time cost, we annotate the

sentiment label only within the video’s keyframes, which directly

evoke the viewer’s strong sentiment response [71]. Specifically, the

annotators pause the video when they are aroused and annotate

the paused frame with the corresponding sentiment. Again, we

aggregate the annotations from multiple annotators as labels [35].

Compared to the full supervision, the single-frame annotation

sharply decreases the annotation cost, since the number of frames

need to be labeled is hundreds of times smaller than the frame-by-

frame annotation (Table 1). Besides, similar to the most commonly

used video-level supervision [65, 66], the single-frame supervision

also requires viewing the whole video and then assigning the labels

for the video. While such supervision can additionally provide the

temporal location information (i.e. the timestamp of labeled frame)

with few extra annotation burden.

3.3 Statistics of TSL-300

In our dataset, the untrimmed videos are collected from TV shows,

movies, and speech videos. After filtering out abnormal data, we

collect 300 untrimmed videos, including half of the speech videos

and half of the TV shows and movies. The average and maximum

length of the collected video is 258.2 and 1,160.1 seconds, respec-

tively. These videos are split into 200 videos for training and 100

videos for testing. As a result, our dataset contains of 1,642 senti-

ment segments for a total of 1,291 minutes. Here, we demonstrate

the statistics of our dataset from the aspect of data collecting, an-

notation, and characteristic.

The videos of TSL-300 are collected from multiple sources, such

as pushing a YouTuber live stream in the office and reporting news

in the television studio. The involved scenes of collected videos

vary from the office to the museum and the types of scenes range

from indoor to outdoor. We leverage the power of the scene under-

standing method [74] to demonstrate the statistics of the collected

scene. As demonstrated in Figure 3(a), the top 3 most appeared

scenes are office, dorm room, and television studio.

We plot the statistic about annotations in Figure 3(b). The left top

figure depicts the segment location in the video. As can be seen, the

distribution of location is close to the uniform distribution, while

achieving the maximum in the middle. Because the middle part of

the video often represents the climax of the story, which tends to

convey rich sentiment. The right top figure shows the single-frame

annotations’ location in the segment. Similarly, the distribution is

close to the uniform distribution. The bottom two figures show the

distribution of sentiment segments in TSL-300. Compared to other

video datasets, the number of segments in our TSL-300 (5.4) is larger

than ActivityNet [3] (1.5) and HACS [69] (2.8), while smaller than

THUMOS14 [15] (15.4). The reason is that there is a gap between

recognition and perception, i.e., each conveyed sentiment is caused

by multiple actions [67].

For the characteristic of video, we visualize the sentiment seg-

ment and plot the distribution of actions in Figure 4, generated by

the action detector [51]. First, as can be seen, a sentiment segment

usually contains multiple actions. Therefore, a sentiment segment

could transmits rich sentiment to the viewers. Besides, this is con-

sistent with the fact that the length of sentiment segment is longer

than action. Second, we notice that the actions appear evenly in

the sentiment segment. Considering sentiments are correlated with

actions, e.g., the situations of characters [52], it shows the labeled

segments have consistency in selecting the temporal boundary.

202



Temporal Sentiment Localization: Listen and Look
in Untrimmed Videos MM ’22, October 10–14, 2022, Lisboa, Portugal

Audio

Visual I3
D

En
co

de
r

I3
D

En
co

de
r

Fusion
Network

Sigmoid1D
conv

Softmax1D
conv

Sentiment
Scores 

Sentiment
Distribution

Feature Extraction Multimodal Feature Fusion Sentiment Localization

labelslabels

Single Frame-
level Annotation

Temporal 
Pooling

TopK

Distribution 
Generation

T

Nc

T

Nc+1

T

Nc

labelslabels
Pseudo Label 

Search
Ground Truth

& Pseudo LabelsVideo-level Frame-by-frame

D

Ĉ
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Figure 5: The pipeline of our method. The input is an untrimmed video consisting of visual modality and audio modality. Our

multimodal fusion network fuses the features from two modalities to predict the sentiment of each frame for localization. The

reverse mapping function is employed to maintain the similar semantic for feature fusion during training. The network is

optimized by jointly training from the generated video-level and the searched frame-by-frame signals.

4 METHODOLOGY

4.1 Formulation

For each training video 𝑣 with 𝑇 frames, the corresponding labels

in labeled frames are 𝒚 = {(𝑡1, 𝑐𝑙𝑠1), . . . , (𝑡𝑁𝑘 , 𝑐𝑙𝑠𝑁𝑘 )}, where 𝑡𝑖 is

the timestamp that indicates the 𝑖𝑡ℎ labeled frame and 𝑐𝑙𝑠𝑖 ∈ R
𝑁𝑐

denotes the one-hot vector, 𝑁𝑘 and 𝑁𝑐 represent the number of

labeled frames and sentiment class, respectively. The labels are or-

dered according to the time that 𝑡𝑖−1 < 𝑡𝑖 < 𝑡𝑖+1. For a testing video,
we aim to predict segments conveying sentiment {(𝑡𝑠 , 𝑡𝑒 , 𝑐𝑙𝑠, 𝜙)},
where 𝑡𝑠 , 𝑡𝑒 , 𝑐𝑙𝑠, 𝜙 denote start, end, class, and confidence of the

segment, respectively. Here, the labels of testing videos are the set

of sentiment segments {(𝑡𝑠 , 𝑡𝑒 , 𝑐𝑙𝑠)}.

4.2 Network Architecture

To address TSL, we design a weakly-supervised framework to lever-

age the nature of the video, i.e., multimodal information and ambi-

guity of sentiment labels, as demonstrated in Figure 5.

Feature Extraction. Since video naturally contains rich affective

cues from multiple modalities, we extract features of visual and

audio modalities following [71]. For the visual modality, we split

the videos into 16-frame RGB segments and feed them into the

pre-trained I3D extractor [4], resulting in the visual feature 𝑋𝑣 ∈

R
𝐷𝑣×𝑇 . Here,𝑇 and𝐷𝑣 represent the length and feature dimensions,

respectively. For the audio modality, we use the most well-known

descriptor Mel-Frequency cepstral coefficients (MFCC). Besides, the

audio description is further processed by a 2D CNN to yield audio

features 𝑋𝑎 ∈ R𝐷𝑎×𝑇 . 𝐷𝑎 is the feature dimension.
Multimodal Feature Fusion module. Both visual and audio
modalities are included for predicting the sentiment in each times-
tamp [70]. However, a direct fusion of these features may lead to the

overfitting of the model. Therefore, we propose a fusion network
to build multimodal representation 𝑓𝑧 . To fill up the semantic gap
between two modalities, the features 𝑋𝑎 and 𝑋𝑣 are aligned by a

1D convolution with ReLU activation. Thus, we yield 𝑓𝑚 ∈ R𝐷𝑓 ×𝑇

for fusion, where 𝐷 𝑓 denotes the dimension of aligned feature and

𝑚 ∈ {𝑣, 𝑎} denotes the index of modality. Sequentially, the two

features are fused by a subnet 𝐹𝑚 : R𝐷𝑓 → R
𝐷𝑧 along the time

dimension. For solving numerical instability, inspired by CPC [42],
we ensure that the fused features maintain their previous patterns.

Specifically, nonlinear mappings 𝐹 ′𝑚 : R𝐷𝑧 → R𝐷𝑓 are applied to
predict the original feature from each modality during training. Be-
sides, to avoid the trivial solution of directly preserving the original
one, i.e. 𝐹 ′𝑚 (𝑓𝑧) = 𝑓𝑚 , we take the cosine similarity as the distance

𝐷 (𝑥,𝑦) = 𝑥𝑦𝑇

| |𝑥 | | · | |𝑦 | | , where | | · | | is the normalization operation.

Then, we compute the loss as

L𝑓 𝑢𝑠𝑒 = −
∑

𝑚∈{𝑣,𝑎}

𝑇∑
𝑡=1

log
𝐷

(
𝑓 𝑡𝑚, 𝐹 ′𝑚 (𝑓 𝑡𝑧 )

)
∑

𝑖≠𝑡 𝐷
(
𝑓 𝑡𝑚, 𝐹 ′𝑚 (𝑓 𝑖𝑧 )

) . (1)

Sentiment Localization. With the fused features, we aim to clas-

sify foreground/background and different sentiments in the frames.

The classifier consists of a 1D convolution and a sigmoid func-

tion, where we aim to predict the class of foreground/background

and each sentiment class 𝐿𝑜𝑔𝑖𝑡𝑠 ∈ R𝑇×𝑁𝑐 . 𝑁𝑐 is the number of

sentiment classes. Here, the probability of foreground/background

indicates whether the frame conveys sentiment or not. Meanwhile,

the classifier gives the scores of different sentiment classes. For

clarity, we denote the probabilities of foreground/background and

multiple sentiment classes as 𝐴 ∈ R𝑇 and 𝐶 ∈ R𝑇×𝑁𝑐 .

Based on the prior of foreground, the probability 𝐶 of the 𝑐𝑡ℎ

sentiment class in the 𝑡𝑡ℎ frame can be calculated as𝐶𝑡𝑐 = 𝐶𝑡𝑐 ·𝐴
𝑡 . To
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learn the intensity in different sentiments, we derive the correspond-

ing distribution 𝐷 ∈ R𝑇×𝑁𝑐 before the sigmoid function. Further,

we can generate the video-level prediction 𝐶𝑣𝑖𝑑
𝑐 , 𝐷𝑣𝑖𝑑

𝑐 based on the

frame-by-frame predictions. Following [29], we adopt temporal 𝑘
pooling [40] as

𝐶𝑣𝑖𝑑
𝑐 =

1

𝑘

∑
𝑡 ∈𝑈

𝐶𝑡𝑐 , 𝑈 = arg 𝑡𝑜𝑝𝑘 (𝐶𝑐 ), (2)

where 𝑘 is set as 𝑇 /8 for the top-𝑘 operation. The predicted proba-

bilities are then used to compute the losses, i.e., L𝑓 𝑟𝑎𝑚𝑒 and L𝑣𝑖𝑑𝑒𝑜 .

4.3 Learning from Single-frame Supervision

Video-level.With single-frame annotations, we can generate video-

level labels for effective training [35]. To generate the labels in an

untrimmed video, we consider two types of information we need

in training a model to locate the sentiment. Indeed, the probability

could indicate whether a sentiment class exists, and the distribution

can help to determine the intensity of each class. Specifically, we

generate 𝑦𝑣𝑖𝑑𝑒𝑜
𝑑

= {𝑑1, . . . , 𝑑𝑁𝑐 |𝑑𝑐 ∈ [0, 1]} in three ways: 1) Hard:

we directly use the appearance of class to model the magnitude.

The supervision signals are formulated into multi-hot labels as

𝑑𝑐 =
1(𝐼𝑐

𝑙
= 1)∑

𝑐 1(𝐼
𝑐
𝑙
= 1)

, (3)

where 𝐼𝑐
𝑙
is the class of the labeled frame and 1(·) is the indicator

function, which is set as 1 if satisfying the conditions described

above. 2) Label Smooth [39]: To help the model learn the magnitude

of the multiple classes that exist simultaneously, we adopt label

smoothing as

𝑑𝑐 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0.9, 𝑐 = argmax
∑
𝑈

1(𝐼𝑐𝑙 = 1)

0.1, 𝑐 ≠ argmax
∑
𝑈

1(𝐼𝑐𝑙 = 1)
, (4)

where𝑈 is the set of the labeled frames. 3) Label-based: Considering

the number of annotations in each class, we model the magnitude

of the distribution according to the number of labeled frames 𝐼𝑙
belonging to the 𝑐𝑡ℎ class,

𝑑𝑐 =
1

|𝑈 |

∑
𝑈

1(𝐼𝑐𝑙 = 1). (5)

To address the ambiguity of intensity in sentiment classes, we

employ the Kullback-Leibler divergence loss as

L𝑣𝑖𝑑𝑒𝑜 = −

𝑁𝑐∑
𝑐=1

𝑑𝑐 ln𝐷
𝑣𝑖𝑑
𝑐 . (6)

Frame-by-frame. In the labeled training set 𝑋𝑙 = (𝑡𝑖 , 𝑐𝑙𝑠𝑖 ) with

𝑁𝑙 frames, the 𝑖𝑡ℎ labeled frame at timestamp 𝑡𝑖 is assigned to a
sentiment class 𝑐𝑙𝑠𝑖 . This allows us to directly compute losses when
training the foreground classifier and the class classifier. Specifically,
Binary Cross-Entropy loss in the form of Focal loss [30] is adopted
to optimize the model in the labeled (foreground) frames. Formally,

for the predicted class probability 𝐶𝑡𝑐 and foreground probability
𝐴𝑡 , the loss is computed as

L𝑙
𝑓 𝑟𝑎𝑚𝑒 = −

𝑁𝑐∑
𝑐=1

(
𝑐𝑙𝑠𝑖

(
1 −𝐶𝑡𝑖

𝑐

)𝛽
log𝐶𝑡𝑖

𝑐 + (1 − 𝑐𝑙𝑠𝑖 )𝐶
𝑡𝑖 𝛽
𝑐 log

(
1 −𝐶𝑡𝑖

𝑐

))

+𝐴
𝛽
𝑡 log 1 −𝐴𝑡 .

(7)

Due to only a single frame being annotated in a sentiment seg-

ment, the labeled frames are fewer than the total frames of the video

(around a hundred times less in a video). To address this problem,

existing methods search for available positive sample frames to sup-

plement training. Inspired by [29], we propose a confidence-based

search strategy to mine the sentiment in the foreground and back-

ground frames. Practically, according to the annotation scheme,

there are background frames that exist between two labeled frames.

The search strategy regards frames as background when they have

low confidence between two labeled frames. However, learning

from pseudo labels for background frames is not enough to train

an effective model. To this end, we generate pseudo labels for unla-

beled frames, including foreground and background. Specifically,

we assign foreground frames based on confidence during training.

We select the frames with high confidence between the two labeled

frames and then assign their labels according to the nearest label.
The generated pseudo-labels lead to the problem that the labels

are wrong in the early stages of model training, especially when
there exists affective gap [70] between high-level sentiment and
deep representations. Further, learning from these labels may lead
to the overfitting problem. To this end, we propose to learn from
the soft pseudo label, which is easier to generate. Specifically, for

the unlabeled training set 𝑋𝑢𝑙 =
(
𝑡𝑖 , 𝑦

𝑢𝑙
𝑖

)
with 𝑁𝑢𝑙 frames, the

pseudo distribution of 𝑖𝑡ℎ frames are generated as 𝑦𝑢𝑙𝑖 = {𝑑𝑢𝑙𝑐 ∈

[0, 1], 𝑐 ∈ R𝑁𝑐+1. In the foreground frames, we generate distribution
as pseudo label from the prediction of labeled frames. While for the
background one, the distribution is the prediction of the background
segment with maximum confidence. Naturally, we could compute
the corresponding loss in the foreground and background frames
as

L𝑢𝑙
𝑓 𝑟𝑎𝑚𝑒 = −

𝑁𝑐∑
𝑐=1

(
𝑑𝑢𝑙𝑐

(
1 −𝐶𝑡𝑖

𝑐

)𝛽
log𝐶𝑡𝑖

𝑐 +
(
1 − 𝑑𝑢𝑙𝑐

)
𝐶
𝑡𝑖 𝛽
𝑐 log

(
1 −𝐶𝑡𝑖

𝑐

))

+𝑑𝑢𝑙𝑁𝑐+1
(1 −𝐴𝑡 )

𝛽 log𝐴𝑡 + (1 − 𝑑𝑢𝑙𝑁𝑐+1
)𝐴

𝛽
𝑡 log (1 −𝐴𝑡 ) .

(8)

Then, we compute the frame-by-frame loss with coefficient 𝜇 as

L𝑓 𝑟𝑎𝑚𝑒 = 𝜇L𝑙
𝑓 𝑟𝑎𝑚𝑒 + (1 − 𝜇)L𝑢𝑙

𝑓 𝑟𝑎𝑚𝑒 . (9)

Overall, our training objects of multi-level joint training framework

can be formulated with coefficients 𝜆1, 𝜆2 as

L = L𝑓 𝑢𝑠𝑒 + 𝜆1L𝑣𝑖𝑑𝑒𝑜 + 𝜆2L𝑓 𝑟𝑎𝑚𝑒 . (10)

5 EXPERIMENT

5.1 Evaluation Metrics

For evaluation, we follow the commonly used metric mAP@tIoU in

temporal localization [3, 27, 28, 35, 66]. Under different intersection

over union (IoU), themetric is calculated bymean Average Precision

(mAP). Due to the challenge of high-level abstract, we set thresholds

ranging from 0.1 to 0.3, with an interval of 0.05. As TSL is in the early

stages of downstream applications, we prefer recall over precision.

Thus, we report Recall and F2-score as 𝐹𝛽 = (1+𝛽2)×𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙
𝛽2×𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙

,

where 𝛽 is 2. We also report averages of these values.

5.2 Implementation Details

The visual frames are split into 16-frame clips via zero-padding,

which are then fed into the corresponding feature extractor. Besides,
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Table 1: Quantitative performance of the proposed method and SOTA methods in our dataset. We include the methods using frame-by-frame
full supervision and video-level weak supervision for reference. † indicates that the method uses the same feature extractor as ours. Average
denotes the mean values of metric at IoU threshold 0.1:0.05:0.3. Bold and underline indicate the highest and second-highest performance,
respectively. We report the annotation cost of labeling 200 training videos for three types of annotation.

Supervision
Annotation

Cost
Method Year

mAP@IoU(%) Average
0.1 0.15 0.2 0.25 0.3 mAP Recall F2 score

Full Supervision 80h:41m
VAANet [71] 2020 28.01 24.95 20.68 16.45 12.50 20.51 69.82 39.59
AFSD [29] 2021 16.95 13.74 12.23 11.21 09.41 12.70 62.30 30.17

AFSD† [29] 2021 30.12 26.74 23.83 21.25 20.51 24.49 73.58 41.27

Weak Supervision
(Video-level)

00h:54m

CoLA [66] 2021 11.17 09.33 07.87 06.34 05.13 07.96 63.02 18.20
UM [28] 2021 13.49 11.69 09.90 07.79 05.82 09.73 44.67 22.42

CoLA† [66] 2021 11.87 10.14 08.11 06.83 04.98 08.38 64.07 21.19

UM† [28] 2021 14.77 13.28 10.77 08.41 06.54 10.75 55.33 23.94

Weak Supervision
(Single-frame)

01h:13m

LACP [27] 2021 12.82 11.04 09.32 07.26 06.06 09.30 60.31 22.91
SFNet [35] 2020 12.73 10.47 08.12 06.81 04.38 08.50 42.17 19.93

LACP† [27] 2021 17.25 14.46 12.47 09.59 07.76 12.30 66.92 25.01

SFNet† [35] 2020 20.26 18.09 15.01 12.38 09.76 15.10 59.55 32.61
Ours 2022 28.72 24.92 20.46 16.10 11.83 20.40 71.14 35.36

only the visual feature extractor is pretrained on Kinetics-400 [4].

To train the model, Adam [23] is adopted for optimization, with

a learning rate of 10−5. The hyperparameters are obtained by the

grid search. The threshold for video-level prediction is set to 0.5.

Following [27], we set the window size for temporal top-𝑘 pooling

as one-eighth the length of the video. All of the experiments are

performed on two 3090 GPUs with 24GB GPU memory.

5.3 Quantitative Analysis

In Table 1, we conduct experiments with three groups of methods on

our dataset. Note that the fully-supervised methods utilize annota-

tions of all frames, which is muchmore expensive than single-frame

annotations. To show the required labor of annotation, we report

the annotation cost for labeling these supervisions. The length of

the videos is expelled since they are necessary for viewing.

Comparison with State-of-the-art Methods.We compare our

TSL-Net with other weakly-supervised temporal localization meth-

ods. First, our method achieves competitive performance in com-

parison to the previous best method of SFNet, outperforming it for

a margin of 33.43% in eight metrics. We give detailed reasons in

our ablation studies. Second, for the case of low IoU thresholds, our

method obtains a large performance improvement, e.g., 41.7% in

mAP@0.1 and 37.7% in mAP@0.2 against SFNet. Because frame-

by-frame training searches for the labels of unlabeled frames could

mine the potential sentiment. Third, the compared methods gain

better performance when using the same audio feature extractor

as ours. This confirms that leveraging multiple affective modalities

can boost the performance of all methods.

Single-frame Supervision vs. Video-level Supervision.With

35.1% of increasing annotation cost, single-framemethods get better

performance than video-level methods, in terms of eight metrics

of 42.3%. We notice that single-frame methods perform better at

a high IoU threshold, i.e. 11.83 of single-frame methods v.s 6.54 of

video-level methods in mAP@0.3. This verifies that single-frame

supervision can provide temporal location information of segments.

Single-frame Supervision vs. Full Supervision. As can be seen,

our proposed single-frame methods achieve competitive perfor-

mance with fully-supervised methods. For example, compared to

VAANet, ours achieves competitive performance using only a few

labeled frames. For clarity, VAANet selects keyframes of video and

extracts corresponding features for classification. Therefore, it can

localize the sentiment temporally by the selected keyframes. The

reason for competitive performance is that we utilize a greedy

search strategy to assign labels for the unlabeled frames and model

the sentiment over the entire video to complement supervision

signals. Thus, we bridge the gap between full supervision and

single-frame one to some extent. Besides, AFSD gets slightly better

performance due to more complete information of full supervision.

5.4 Ablation Studies

Modules & losses. To investigate video-level distribution learning,

single frame sentiment learning, and multimodal feature alignment

module, we conduct ablation studies as shown in Table 2.We further

discuss each component by analyzing its variants.

How to generate video-level distribution? In Table 3, we aim

to investigate the way of generating the video-level distribution.

Here, we remove multimodal fusion and frame-by-frame training

to build our baseline. First, we find that label-based distribution

generation achieves the best performance. Because it leverages the

magnitude relation between multiple sentiment classes. Intuitively,

the magnitude of the sentiment conveyed is directly proportional

to the time it occurs. Second, the Kullback-Leibler divergence loss

achieves better performance at low IoU thresholds compared to the

binary cross-entropy loss, such as 27.0% in mAP@0.1 and 45.7% in

mAP@0.2. This is because the KL loss helps to mine the potential

sentiment by simulating the corresponding magnitude impacted

by the ambiguity of sentiment [59].

How to supervise the prediction of each frame? To investigate

how to supervise the prediction frame-by-frame, we conduct abla-

tion experiments as shown in Table 4. First, in comparison of lines

1 and 2, we notice a sharp decrease in performance when removing

the loss for pseudo-label. This is because the number of labeled

frames is small, and thus it is hard to optimize the model. Second,

in comparison of lines 2 and 3, we find a large performance gap

between using the hard CE loss in LACP and ours, especially at low

IoU thresholds. Because our proposed loss for unlabeled frames

reduces the ratio of the hard case to the learning objects, i.e. focuses

on the case in the center of the segment, it alleviates the risk of
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Table 2: Ablation studies on the modules of our method, where Vid,
FbF, and MA denotes video-level training, frame-by-frame training,
and multimodal feature fusion, respectively.

Module mAP@IoU(%) mAP
AVGVid FbF MA 0.1 0.2 0.3

� 22.45 17.08 11.20 16.91
� � 25.32 18.03 11.35 18.23
� � � 28.72 20.46 11.83 20.33

Table 3: Ablation studies on the impact of video-level training.

Variant mAP@IoU(%) mAP
AVG0.1 0.2 0.3

BCE loss 16.37 11.72 07.34 11.81

Hard (Equ.3) 20.08 15.72 09.96 15.25
Smooth (Equ.4) 20.89 14.50 08.50 14.63

Label-based (Equ.5) 22.45 17.08 11.20 16.91

Table 4: Ablation studies on the impact of frame-by-frame training.

Variant mAP@IoU(%) mAP
AVG0.1 0.2 0.3

No pseudo-label 18.48 13.26 08.57 13.43

LACP [27] 16.37 11.72 07.34 11.81
Ours 28.72 20.46 11.83 20.33

Table 5: Ablation studies on the impact of multimodal feature fu-
sion.

Variant mAP@IoU(%) mAP
AVG0.1 0.2 0.3

TFN [61] 18.60 12.78 08.72 13.36

No feature alignment 26.44 16.58 10.63 17.77
Use L2 dis in L𝑓 𝑢𝑠𝑒 25.56 18.22 10.90 18.22

Ours 28.72 20.46 11.83 20.33

Table 6: Ablation studies on the impact of affective modalities.

Metrics Audio Visual Visual+Audio

[36] [27] Ours [36] [27] Ours [36] [27] Ours

mAP 07.41 08.18 09.71 08.50 09.30 11.16 15.10 12.30 20.40
Recall 36.37 54.70 56.85 42.17 60.31 60.55 59.55 66.92 71.14

F2 score 17.10 20.42 27.37 19.93 22.91 26.33 32.61 25.01 35.36

learning the wrong pseudo label. In contrast, LACP focuses on the

hard samples in the margin of segments.

How to perform multimodal feature fusion for predicting

sentiment? In Table 5, we conduct experiments to find the optimal

design for multimodal feature fusion. First, to disable the align-

ment between visual modality and audio modality, both feature

alignments R𝐷𝑚 → R
𝐷𝑧 are removed. Then, we replace the co-

sine distance function with the inner product distance in L𝑓 𝑢𝑠𝑒 ,

i.e. 𝐷 (𝑥,𝑦) = 𝑥𝑦𝑇 . As can be seen, TFN which directly fuses mul-

timodal features gets a suboptimal performance. This is consis-

tent with our motivation for designing our fusion module. Among

variants of our design, removing the feature alignment sharply

decreases performance because it helps to learn the intrinsic part of

unimodal features. The feature from multiple modalities can help

localize the sentiment in the temporal dimension, which is verified

by the observation that using our multimodal feature extractor

can boost the performance, i.e., achieving 27.7% improvement over

SFNet, LACP, UM, CoLA in eight metrics.

Which affective modality contributes most? In Table 6, we

analyze the effectiveness of each affective modality. We show the

performance of our method and two SOTA methods using audio-

only (A), visual-only (V), and visual-audio features (VA). We find

Figure 6: The hyperparameters analysis of 𝜆1, 𝜆2, and 𝜇. We search

for the best solution for average mAP.

that ours achieves competitive performance against other SOTA

methods, in terms of 18.8% (A), 11.7% (V), and 37.8% (VA) improve-

ment against the previous SOTA method. We also observe that

visual modality contributes more than audio modality. It lies in that

visual modality provides more high-level emotional cues, e.g. facial

emotion and scene.

5.5 Hyperparameters Analysis

In Figure 6, we study the impact of 𝜆1, 𝜆2, and 𝜇, in terms of the

average of mAP@0.1:0.3. Thus, we conduct experiments to find

the optimal values of 𝜆1 and 𝜆2 from {0.1, 0.2, 0.5, 1, 2, 5, 10}. For
promising performance, we empirically set 𝜆1, 𝜆2 as 2, 1 to balance

the influence between two losses. We find that too large and too

small values of 𝜆1 and 𝜆2 can lead to degradation of the perfor-

mance. To balance the effect between the losses for labeled part

and unlabeled part, we search for the best value of 𝜇 from 0 to 1

with the interval of 0.1. Our method achieves optimal performance

when treating the losses for labeled and unlabeled data equally.

When considering only one of these two losses, i.e. 𝜇 = 0/1, the

model performs worse than using both. This is because the two

complement each other. The unlabeled part increases the number

of samples, and the labeled part learns reliable labels.

6 CONCLUSIONS

To narrow the gap between video sentiment analysis and real-

world applications, we propose a new task, i.e. Temporal Sentiment

Localization, which will be useful for future studies in video sen-

timent analysis. A benchmark dataset containing 300 videos is

built for fully- and weakly-supervised settings. To reduce the an-

notation cost, we propose a weakly-supervised method to utilize

single-frame annotations for joint training. Our experiments raised

two interesting observations: 1) Utilizing multimodal information

can boost the performance of TSL. We speculate that visual and

audio are highly related to sentiment and that affective modalities

provide rich cues for sentiment localization. 2) Learning from senti-

ment distribution can help detect high-level and abstract sentiment.

We believe learning from distribution can bridge the affective gap

deriving from sentiment.
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